Wir präsentieren Protokolle hierin für High Yield Isolierung des physiologisch aktiven Thylakoids und Protein Transport Assays für die Chloroplasten Twin Arginin Translokation (CpTat), sekretorische (cpSec1) und Signalwege Anerkennung Teilchen (CpSRP).
Chloroplasten sind die Organellen in grünen Pflanzen verantwortlich für zahlreiche wichtige Stoffwechselwege, die vor allem Photosynthese. Innerhalb der Chloroplasten der Thylakoidmembran-Membran-System beherbergt die photosynthetische Pigmente, Reaktion-Zentrum-komplexe und die meisten der Elektron-Träger, und ist verantwortlich für Licht-abhängige ATP-Synthese. Über 90 % der Chloroplasten Proteine sind im Zellkern codiert, übersetzt in die Zellflüssigkeit und anschließend in die Chloroplasten importiert. Protein-Weitertransport in oder über der Thylakoidmembran Membran nutzt eine der vier Translokation Wege. Hier beschreiben wir eine hochverzinsliche Methode zur Isolierung von Transport-kompetente Thylakoids aus Erbsen (Pisum Sativum), zusammen mit Transport-Assays durch drei Energie-abhängige CpTat, cpSec1 und CpSRP-vermittelten Signalwege. Diese Methoden ermöglichen Experimente bezüglich Thylakoidmembran Protein Lokalisierung, Transport-Energetik und die Mechanismen der Protein Translokation über biologische Membranen.
Fast alle die proteinhaltige Maschinen verantwortlich für die ordnungsgemäße Chloroplasten Funktion muss aus dem Zytosol1umgesiedelt werden. Die Chloroplasten-Umschläge sind Protein Substrate durch das Translocon der äußeren Membran (TOC) und die Translocon der inneren Membran (TIC)2eingeführt. Weitere Ausrichtung auf die Thylakoidmembran erfolgt Membran und Lumen durch Twin Arginin Translokation (CpTat)3, die sekretorischen (cpSec1)4, Signal Anerkennung Teilchen (CpSRP)5, und die spontane Aufnahme Wege6 . Eine Methode für die High Yield Isolierung der physiologisch aktiven Chloroplasten und der Thylakoidmembran Membranen ist notwendig zur Messung der Energetik und Kinetik einer Translokation Veranstaltung, zu die vielfältigen Transportmechanismen in jeder Weg zu verstehen und zu lokalisieren eine bestimmtes Protein Substrat für eines der sechs verschiedene Fächer der Chloroplasten von Interesse.
Die Isolation der Membranen aus den Chloroplasten bietet bessere experimentelle Kontrolle über Umweltfaktoren (z. B. Salz und Substrat-Konzentrationen, die Anwesenheit von ATP/GTP und pH-Bedingungen), die die Messung der Transport Energetik zu beeinflussen und Kinetik. Dieser in-vitro- Umgebung eignet sich für die Erforschung der mechanistischen Details der Translokation aus den gleichen Gründen. Darüber hinaus während predictive Software für die Lokalisierung der Chloroplasten Proteine7,8verbessert hat, bieten in-vitro- Transport-Assays einer schnelleren Methode zur Bestätigung über Mikroskopie-basierte fluoreszierenden Proben, die erfordern Sie eine genetisch codierte fluoreszierende Tag, Pflanzentransformation und/oder spezifische Antikörper. Hier präsentieren wir Ihnen Protokolle für Chloroplasten und Thylakoidmembran Isolationen von Erbsen (Pisum Sativum), sowie für Transport-Assays für jeden der die ENERGIEABHÄNGIGE Thylakoidmembran Translokation Wege optimiert.
Chloroplasten und Thylakoidmembran isolation
Übermäßiger Bruch führt in armen Chloroplasten Isolierung und damit schlechte Thylakoidmembran nach Trennung im Verlauf ergeben. Es empfiehlt sich, die geerntete Gewebe sanft zu homogenisieren, indem sichergestellt wird, dass sämtliches Material eingetaucht ist, vor dem Mischen und pulsieren in 15 s Zyklen bis vollständig homogenisiert. Verwenden Sie ggf. mehrere kürzere Runden mit weniger Gewebe in jeder Runde.
Kühl…
The authors have nothing to disclose.
Dieses Manuskript wurde mit finanzieller Unterstützung durch die Abteilung von Chemie, Geowissenschaften und Biosciences, 408 Büro der Grundlagenwissenschaften Energie an das US Department of Energy durch Grant DE-SC0017035 vorbereitet
Pisum sativum seeds | Seedway LLC, Hall, NY | 8686 – Little Marvel | |
Miracloth | Calbiochem, Gibbstown, NJ | 475855-1 | |
80% Acetone | Sigma, Saint Louis, MO | 67-64-1 | |
Blender with sharpened blades | Waring Commercial | BB155S | |
Polytron 10-35 | Fischer Sci | 13-874-617 | |
Percoll | Sigma, Saint Louis, MO | GE17-0891-01 | |
Beckman J2-MC with JA 20 rotor | Beckman-Coulter | 8043-30-1180 | |
Sorvall RC-5B with HB-4 rotor | Sorvall | 8327-30-1016 | |
100 mM dithiothreitol (DTT) in 1xIB | Sigma, Saint Louis, MO | 12/3/83 | Can be frozen in aliquots for future use |
200 mM MgATP in 1xIB | Sigma, Saint Louis, MO | 74804-12-9 | Can be frozen in aliquots for future use |
Thermolysin in 1xIB (2mg/mL) | Sigma, Saint Louis, MO | 9073-78-3 | Can be frozen in aliquots for future use |
HEPES | Sigma, Saint Louis, MO | H3375 | |
K-Tricine | Sigma, Saint Louis, MO | T0377 | |
Sorbitol | Sigma, Saint Louis, MO | 50-70-4 | |
Magnesium Chloride | Sigma, Saint Louis, MO | 7791-18-6 | |
Manganese Chloride | Sigma, Saint Louis, MO | 13446-34-9 | |
EDTA | Sigma, Saint Louis, MO | 60-00-4 | |
BSA | Sigma, Saint Louis, MO | 9048-46-8 | |
Tris | Sigma, Saint Louis, MO | 77-86-1 | |
SDS | Sigma, Saint Louis, MO | 151-21-3 | |
Glycerol | Sigma, Saint Louis, MO | 56-81-5 | |
Bromophenol Blue | Sigma, Saint Louis, MO | 115-39-9 | |
B-Mercaptoethanol | Sigma, Saint Louis, MO | 60-24-2 |