אנו מתארים פרוטוקול לצורך זיהוי ללא תווית לימפוציט יחוברו באמצעות הדמיה שלב כמותיים באלגוריתם למידה חישובית. מדידות של-tomograms השבירה תלת-ממד של לימפוציטים להציג נתוני תלת-ממד מורפולוגי וביוכימי לתאים בודדים, אשר לאחר מכן ניתוח עם מכונת-learning אלגוריתם זיהוי סוגי תאים.
נתאר כאן פרוטוקול לצורך זיהוי ללא תווית לימפוציט יחוברו באמצעות הדמיה כמותיים שלב למידה חישובית. זיהוי של סוגי לימפוציטים חשוב בחקר ואימונולוגיה וכן אבחון וטיפול במחלות שונות. כיום, בשיטות הרגילות לסיווג סוגי לימפוציטים להסתמך על תיוג חלבונים קרום ספציפי באמצעות תגובות אנטיגן-נוגדן. עם זאת, שיטות אלה תיוג לשאת הסיכונים הפוטנציאליים של סירוס ועיקור תאיים. הפרוטוקול המתואר כאן מתגבר על האתגרים הללו על ידי ניצול מהותי ניגודים אופטי נמדד על ידי הדמיה תלת פאזה כמותיים באלגוריתם למידה חישובית. מדידה של תלת-ממד מקדם שבירה (RI) tomograms של לימפוציטים מספק מידע כמותי אודות פנוטיפים של תאים בודדים ומורפולוגיה תלת-ממד. הפרמטרים biophysical מופק את tomograms רי 3D נמדד מכן נותחו באופן כמותי עם מכונת למידה אלגוריתם, הפעלת ללא תווית זיהוי סוגי לימפוציטים ברמה תא בודד. אנחנו מודדים את tomograms רי תלת-ממד של לימפוציטים B, CD4 + T ו CD8 + T ומזוהה שלהם סוגי תאים עם למעלה מ- 80% דיוק. ב פרוטוקול זה, אנו מתארים את השלבים המפורטים לימפוציט בידוד, הדמיה תלת-ממד שלב כמותית של למידה חישובית לזיהוי סוגי לימפוציטים.
לימפוציטים ניתן לסווג תת השונים לרבות B, המסייע (CD4 +) T, ציטוטוקסיות (CD8 +) T ו- T רגולטורי תאים. לכל סוג של לימפוציט יש תפקיד אחר במערכת החיסון מסתגלת; לדוגמה, B לימפוציטים לייצר נוגדנים, ואילו לימפוציטים מסוג T לזהות אנטיגנים ספציפיים, לחסל תאים חריגים, לווסת B לימפוציטים. לימפוציט פונקציית רגולציה בחוזקה בשליטת ויש הקשורים במחלות שונות, כולל סרטן1, מחלות אוטואימוניות2זיהומים נגיפיים3. לפיכך, זיהוי סוגי לימפוציטים חשוב להבין תפקידיהם pathophysiological במחלות כגון ועבור חיסוני במרפאות.
כיום, שיטות לסיווג סוגי לימפוציטים להסתמך על תגובות אנטיגן-נוגדן על ידי מיקוד חלבוני ממברנה משטח מסוים או סמני פני שטח4. פילוח סמני פני השטח היא שיטה מדויקת כדי לקבוע סוגי לימפוציטים. עם זאת, זה דורש ריאגנטים יקר ונהלים גוזלת זמן. יתר על כן, הוא נושא הסיכונים של השינוי של מבנה החלבונים ממברנה משינוי של פונקציות הסלולר.
כדי להתגבר על האתגרים הללו, הפרוטוקול המתואר כאן מציג ללא תווית זיהוי סוגי לימפוציטים שלב כמותיים 3D הדמיה (ה-QPI) באמצעות מכונת למידה5. שיטה זו מאפשרת את סיווג סוגי לימפוציטים ברמה תא בודד בהתבסס על מידע מורפולוגי מופק ללא תווית הדמיה ממוחשבת של לימפוציטים בודדים. בניגוד קונבנציונאלי פלורסצנטיות טכניקות במיקרוסקופ, ה-QPI מנצל הפצות מקדם שבירה (RI) (מהותי התכונות האופטיות של תאים חיים ורקמות) כמו ניגודיות אופטי6,7. Tomograms רי של לימפוציטים בודדים מייצגים פנוטיפי מידע ספציפי יחוברו של לימפוציטים. במקרה זה, לנצל מערכתית tomograms רי תלת-ממד של לימפוציטים בודדים, אלגוריתם הלמידה המכונה תחת פיקוח היה מנוצל.
תוך שימוש בטכניקות שונות של ה-QPI, tomograms רי תלת-ממד של תאים באופן פעיל שימשו לחקר התא פתופסיולוגיה משום שהם מספקים ללא תווית, כמותיים הדמיה יכולת8,9,10, 11,12,13. בנוסף, חלוקות RI תלת-ממד של תאים בודדים יכול לספק מידע מורפולוגי, ביוכימי, ביו-מכני על תאי. Tomograms רי 3D כבר נעזרו בעבר בתחומי המטולוגיה14,15,16,17, מחלות זיהומיות18,19, 20, אימונולוגיה21, תא ביולוגיה22,23, דלקת24, סרטן25, מדעי המוח26,27, ביולוגיה התפתחותית28, טוקסיקולוגיה 29, מיקרוביולוגיה12,30,31,32.
למרות tomograms רי 3D לספק מידע מורפולוגי וביוכימי מפורט של תאים, הסיווג של לימפוציטים יחוברו קשה להשיג על-ידי פשוט הדמיה תלת-ממדית RI tomograms5. לנצל באופן שיטתי, באופן כמותי את tomograms רי 3D נמדד עבור סיווג סוג תא, אנחנו מנוצל באלגוריתם מכונת למידה. לאחרונה, יצירות אחדות דווח בשלב כמותיים אשר נותחו תמונות של תאים עם מכונת שונים לימוד אלגוריתמים33, כולל הגילוי של מיקרואורגניזמים34, סיווג של חיידקים סוג35 , 36, זיהוי מהיר, ללא תווית של נבגי אנתרקס37, אוטומטי ניתוח של תאי זרע38, ניתוח של סרטן תאים39,40, זיהוי של הפעלת מקרופאג41.
פרוטוקול זה מספק שלבים מפורטים לביצוע ללא תווית זיהוי סוגי לימפוציטים ברמת תא בודד באמצעות ה-QPI 3D ולמידה ממוחשבת. זה כולל: 1) לימפוציט בידוד מן העכבר דם, 2) לימפוציט מיון באמצעות זרימת cytometry, 3) תלת-ממד ה-QPI, 4) כמותית הדמיה של תלת-ממד tomograms רי ו 5) תחת פיקוח למידה לצורך זיהוי סוגי לימפוציטים.
אנו מציגים פרוטוקול המאפשר זיהוי סוגי לימפוציטים ניצול הדמיה תלת פאזה כמותי ולימוד מכונה ללא תווית. השלבים הקריטיים של פרוטוקול זה הם הדמיה שלב כמותיים ובחירת תכונה. עבור ההדמיה הולוגרפית אופטימלית, הצפיפות של תאים צריכה להיות נשלטת כפי שתואר לעיל. יציבות מכנית של התאים חשוב גם להשיג התפ?…
The authors have nothing to disclose.
עבודה זו נתמכה על ידי את KAIST BK21 + תוכנית, Tomocube, inc., ו את נבחרת מחקר קרן של קוריאה (2015R1A3A2066550, 2017M3C1A3013923, 2018K 000396). י’ ג’ו מאשר תמיכה מן אחוות לנשיאות KAIST אסאן קרן המלגות מדע הביו-רפואית.
Mouse | Daehan Biolink | C57BL/6J mice | gender and age-matched, 6 – 8 weeks |
Falcon conical centrifuge tube | ThermoFisher Scientific | 14-959-53A | 15 mL |
Phosphate-buffered saline | Sigma-Aldrich | 806544-500ML | |
Ammonium-chloride-potassium lysing buffer | ThermoFisher Scientific | A1049201 | |
RPMI-1640 medium | Sigma-Aldrich | R8758 | |
Fetal bovine serum | ThermoFisher Scientific | 10438018 | |
Antibody | BD Biosciences | 553140 (RRID:AB_394655) | CD16/32 (clone 2.4G2) |
Antibody | BD Biosciences | 555275 (RRID:AB_395699) | CD3ε (clone 17A2) |
Antibody | Biolegnd | 100734 (RRID:AB_2075238) | CD8α (clone 53-6.7) |
Antibody | BD Biosciences | 557655 (RRID:AB_396770) | CD19 (clone 1D3) |
Antibody | BD Biosciences | 557683 (RRID:AB_396793) | CD45R/B220 (clone RA3-6B2) |
Antibody | BD Biosciences | 552878 (RRID:AB_394507) | NK1.1 (clone PK136) |
Antibody | eBioscience | 11-0041-85 (RRID:AB_464893) | CD4 (clone GK1.5) |
DAPI | Roche | 10236276001 | 4,6-diamidino-2-phenylindole |
Flow cytometry | BD Biosciences | Aria II or III | |
Imaging chamber | Tomocube, Inc. | TomoDish | |
Holotomography | Tomocube, Inc. | HT-1H | |
Holotomography imaging software | Tomocube, Inc. | TomoStudio | |
Image professing software | MathWorks | Matlab R2017b |