Hier präsentieren wir ein Protokoll, um Hochleistungs-Lücke/Si Heterojunction Solarzellen mit einer hohen Si Minderheit-Träger Lebensdauer zu entwickeln.
Zur Verbesserung der Effizienz von Si-basierte Solarzellen über ihre Shockley-Queisser-Grenze hinaus ist der optimale Pfad mit III-V-basierte Solarzellen integrieren. In dieser Arbeit präsentieren wir Lücke/Si Heterojunction Hochleistungssolarzellen mit einem hohen Si Minderheit-Träger Lebensdauer und hoher Kristallqualität epitaktische Lücke Schichten. Es wird gezeigt, dass durch Anwendung von Phosphor (P)-Diffusionsschichten in das Si-Substrat und eine SündeX Schicht, die Si Minderheit-Träger Lebensdauer kann werden gepflegte während des Wachstums der Lücke in der Molekularstrahl-Epitaxie (MBE). Durch die Kontrolle der Wachstumsbedingungen, wuchs die hohe Kristallqualität Lücke auf der P-reiche Si-Oberfläche. Die Filmqualität ist geprägt von Rasterkraftmikroskopie und hochauflösende Röntgenbeugung. Darüber hinaus MoOx wurde eingeführt, als Loch-selektiven Kontakt, das führte zu einem deutlichen Anstieg der Kurzschluss Stromdichte. Die erreichte hohe Geräteleistung der Lücke/Si Heterojunction Solarzellen stellt einen Weg zur weiteren Verstärkung der Leistung des Si-basierten Photovoltaik-Geräte.
Verbesserung der gesamten Solarzelle Wirkungsgrad1,2gab es Bemühungen zur Integration von unterschiedlichen Materialien mit Gitter Fehlanpassungen. Die Integration von III-V/Si hat das Potenzial, weiter die aktuelle Si Solarzelle Effizienz und ersetzen die teuren III-V-Substraten (z. B. GaAs und Ge) mit einem Si-Substrat für Mehrfachsolarzellen Solarzelle Anwendungen. Unter allen III-V binäre Materialsysteme ist Gallium-Phosphid (GaP) ein guter Kandidat für diesen Zweck, da es die kleinste Gitterfehlanpassung (~ 0,4 %) mit Si und eine hohe indirekte Bandlücke hat. Diese Funktionen können qualitativ hochwertige Integration der Lücke mit Si-Substrat. Es hat theoretisch gezeigt, dass GaP/Si Heterojunction Solarzellen die Effizienz der konventionellen passivierte Emitter hinteren Si Solarzellen3,4 steigern könnte, um in den Genuss des einzigartigen Band-Offset zwischen GaP und Si (∆Ev ~1.05 eV und ∆Ec ~0.09 eV). Dies macht Lücke einen vielversprechenden Elektron selektive Kontakt für Silizium-Solarzellen. Um Hochleistungs Lücke/Si Heterojunction Solarzellen zu erreichen, sind jedoch eine hohe Si Bulk Lebensdauer und hochwertige Lücke/Si-Schnittstelle erforderlich.
Während des Wachstums der III-V-Materialien auf einem Si-Substrat Molekularstrahl-Epitaxie (MBE) und metallorganischen Vapor Phase Epitaxy (MOVPE) hat bedeutende Verminderung der Si-Lebensdauer weit5,6,7, beobachtet 8 , 9. es zeigte sich, dass die Lebensdauer Abbau geschieht hauptsächlich während der thermischen Behandlung von Si-Wafern in den Reaktoren was für Oberfläche Oxid Desorption und/oder Oberfläche Wiederaufbau vor der epitaktische Wachstum10erforderlich ist. Dieser Abbau wurde die extrinsische Diffusion von Verunreinigungen stammten aus den Wachstum Reaktoren5,7zugeschrieben. Verschiedene Ansätze sind vorgeschlagen worden, um dieser Si-Lebensdauer-Abbau zu unterdrücken. In unserer bisherigen Arbeit haben wir zwei Methoden gezeigt, in denen der Si-Lebensdauer-Abbau deutlich unterdrückt werden kann. Die erste Methode zeigte sich durch die Einführung von SiNx als eine Diffusion Barrier7 und die zweite durch die Einführung der P-Diffusionsschicht als ein Gettern Agent11 an das Si-Substrat.
In dieser Arbeit haben wir bewiesen, Hochleistungs-Lücke/Si-Solarzellen auf der Grundlage der genannten Ansätze um Silizium Bulk Lebensdauer Abbau zu mildern. Die Techniken, die Si-Lebensdauer zu bewahren haben breite Anwendungen in Mehrfachsolarzellen Solarzellen mit aktiven Si unteren Zellen und elektronische Geräte wie hochmobile CMOS. In diesem ausführlichen Protokoll werden die Verarbeitungsdetails der Lücke/Si Heterojunction Solar Zellen, einschließlich Si Wafer Reinigung, P-Diffusion in den Ofen, Lücke Wachstum und Verarbeitung, Lücke/Si-Solarzellen vorgestellt.
Eine nominale 25 nm dicke Lücke Schicht wurde epitaktisch auf eine P-reiche Si-Oberfläche über MBE angebaut. Um eine bessere Qualität der Lücke Schicht auf einem relativ niedrigen V/III Si Substraten wachsen ist Verhältnis (P/Ga) vorzuziehen. Ein guter Kristallqualität Lücke Schicht ist notwendig, hohe Leitfähigkeit und niedriger Dichte von Rekombinationszentren zu erreichen. Die AFM Root-Mean-Square (RMS) der Lücke Oberfläche ist ~0.52 nm zeigt eine glatte Oberfläche mit keine Gruben, bezeichnend für hohe K…
The authors have nothing to disclose.
Die Autoren möchten L. Ding und M. Boccard für ihren Beitrag bei der Bearbeitung und Prüfung von Solarzellen in dieser Studie zu danken. Die Autoren erkennen Finanzierung durch das U.S. Department of Energy unter Vertrag DE-EE0006335 und Engineering Research Center Program von der National Science Foundation und das Büro für Energieeffizienz und erneuerbare Energien des Department of Energy NSF Kooperationsvertrag No. EWG-1041895. Som Dahal bei Solar Power Labor wurde, teilweise durch NSF Vertrag ECCS-1542160 unterstützt.
Hydrogen peroxide, 30% | Honeywell | 10181019 | |
Sulfuric acid, 96% | KMG electronic chemicals, Inc. | 64103 | |
Hydrochloric acid, 37% | KMG electronic chemicals, Inc. | 64009 | |
Buffered Oxide Etch 10:1 | KMG electronic chemicals, Inc. | 62060 | |
Hydrofluoric acid, 49% | Honeywell | 10181736 | |
Acetic acid | Honeywell | 10180830 | |
Nitride acid, 69.5% | KMG electronic chemicals, Inc. | 200288 |