Aquí se describe un protocolo que es un host adaptable, todo, herramienta de detección de alto contenido que puede ser utilizada para estudiar las interacciones huésped-patógeno y se utiliza para el descubrimiento de medicamentos.
El número de medicamentos nuevos identificados por tradicionales, pantallas en vitro ha disminuido, reducir el éxito de este enfoque en la búsqueda de nuevas armas combatir la resistencia a múltiples drogas. Esto ha llevado a la conclusión de que los investigadores no sólo la necesidad de encontrar nuevos medicamentos, pero también es necesario desarrollar nuevas formas de encontrarlos. Entre los candidatos más prometedores métodos todo organismo, en vivo ensayos lecturas de alto rendimiento, fenotípica de uso y acoge esa gama de elegans de Caenorhabditis a Danio rerio. Estos hosts tienen varias ventajas de gran alcance, incluyendo reducciones dramáticas en hits positivos falsos, como compuestos que son tóxicos para el huésped o biounavailable se colocan típicamente en la pantalla inicial, antes de seguir costoso para arriba.
Aquí mostramos cómo nuestro análisis se ha utilizado para interrogar variación de host en el bien documentado C. elegans—Pseudomonas aeruginosa matanza líquido patosistema. También demostramos varias extensiones de esta técnica bien elaborada. Por ejemplo, somos capaces de llevar a cabo pantallas genéticas de alto rendimiento utilizando RNAi en 24 o 96 pocillos formatos de placa factores de host consulta en esta interacción huésped-patógeno. Usando este análisis, pantallas de todo el genoma se pueden completar en sólo unos meses, que dramáticamente pueden simplificar la tarea de identificar dianas farmacológicas, potencialmente sin la necesidad de enfoques laboriosa purificación bioquímica.
También Divulgamos aquí una variación de nuestro método que sustituye a la bacteria gram-positiva Enterococcus faecalis para el patógeno gramnegativo p. aeruginosa. Mucho como es el caso de p. aeruginosa, muerte por E. faecalis es dependiente del tiempo. A diferencia de los anteriores C. elegans, ensayos deE. faecalis , nuestro análisis de E. faecalis no exigen Preinfección, mejorando su perfil de seguridad y reducir las posibilidades de contaminación de equipos de manipulación de líquidos. El ensayo es altamente robusto, mostrando ~ 95% mortalidad 96 h post infección.
La identificación y desarrollo de antibióticos de amplio espectro, eficaces, ahora hace ya casi un siglo, condujeron a un momento clave en la salud pública donde había una creencia extensa que infecciosa enfermedad sería una lacra del pasado. Dentro de unas pocas décadas, este optimismo empezó a decaer, como patógeno después de patógeno desarrollado mecanismos de resistencia que estos tratamientos una vez milagrosos. Durante algún tiempo, la carrera de armamentos entre los esfuerzos de descubrimiento de drogas y los patógenos parecía equilibrada. Sin embargo, el mal uso de antimicrobianos ha culminado recientemente con la aparición de cepas resistentes a los fármacos pan de Klebsiella pneumoniae, Acinetobacter baumanii, Serratia marcescensy p. aeruginosa1, 2,3,4.
P. aeruginosa es un oportunista, gram negativos, múltiples hosts patógeno que es una grave amenaza a los pacientes con quemaduras graves, aquellos que son inmunodeprimidos, o fibrosis quística. Es también cada vez más identificado como un agente causal en las infecciones nosocomiales severas, particularmente debido a la continua adquisición de resistencia a los antimicrobianos. Para comenzar a abordar esta amenaza, hemos utilizado el bien documentado C. elegans–p. aeruginosa infección sistema5. Nuestro laboratorio ha aprovechado este sistema para el desarrollo de una plataforma de base líquida, alto rendimiento, alto contenido de investigación para identificar nuevos compuestos que limitan la capacidad del patógeno para matar el host6. Curiosamente, estos compuestos parecen pertenecer a por lo menos tres categorías generales, incluyendo antimicrobianos7 y virulencia de los inhibidores de la8. Otros ensayos de descubrimiento de drogas de alto contenido en C. elegans se han divulgado para Mycobacterium tuberculosum, Chlamydia trachomatis, pestis de Yersinia, Listeria monocytogenes, Francisella tularensis, Staphylococcus aureus, Candida albicans, y Enterococcus faecalis, entre otros9,10,11,12,13,14,15,16. Estos tipos de ensayos tienen varias ventajas bien reconocidos, tales como limitar falsos éxitos positivos que pueden ser tóxicos para el anfitrión y el patógeno, aumento de la probabilidad de biodisponibilidad en comparación con una pantalla química y la capacidad para identificar éxitos más allá de simplemente limitando el crecimiento microbiano, como anti-antiguamente, las moléculas estimulantes inmunes o compuestos que lo contrario inclinación el equilibrio de la interacción huésped-patógeno en favor de la ex. Además, los compuestos descubiertos en estas pantallas son a menudo eficaces en huéspedes mamíferos.
Cabe señalar que por lo menos dos otros ensayos17,18 están disponibles para llevar a cabo pantallas de alto rendimiento en C. elegans en líquido. Sin embargo, cada uno de estos ensayos es una modificación que permite el análisis prototípico de colonización intestinal, conocido como muerte lenta, a realizarse en líquido, aumentar el rendimiento y permitiendo a los compuestos que más fácilmente se proyectarán. Caracterización cuidadosa ha demostrado concluyentemente que los mecanismos de virulencia bacteriana son diferentes entre estos ensayos y nuestra pantalla basado en el líquido7. Puesto que ambos tipos de virulencia se observan en sistemas mamíferos, es importante considerar que determinante de virulencia es más relevante para los intereses del experimentador antes selección de ensayo.
Aquí se demuestra una versión optimizada de la líquido-ensayo de C. elegans-P. aeruginosa . También divulgamos la adaptación de nuestro método de análisis de base líquida para acomodar el patógeno bacteriano grampositivo Enterococcus faecalis. Como p. aeruginosa, E. faecalis se identifica cada vez más como una amenaza grave nosocomial con un armamento cada vez mayor de resistencia a los antimicrobianos vías1. Aunque existe un método anterior para la detección de alto rendimiento de E. faecalis 14, requiere Preinfección con el patógeno, lo que complica el procedimiento y aumenta la probabilidad de contaminación de equipos como el FlowSort COPAS. Nuestro protocolo elimina la necesidad de la infección, mejorar el perfil de seguridad. Por último, se reporta un medio por el cual cualquiera de estos ensayos se puede combinar con alimentación de RNAi, lo que permite al usuario buscar factores de huésped que desempeñan un papel en el establecimiento, o resistencia a la infección.
Este ensayo (o ensayos similares donde otros patógenos se sustituyen por p. aeruginosa o E. faecalis) es útiles para una variedad de propósitos, incluyendo el descubrimiento de la droga. También es útil para abordar cuestiones biológicas fundamentales, como la identificación de factores de virulencia, la aclaración de las vías de defensa del anfitrión y determinar la maquinaria regulatoria involucrados en la interacción huésped-patógeno.
Aunque el ensayo asesinat…
The authors have nothing to disclose.
Este estudio fue apoyado por la prevención del cáncer y el Research Institute of Texas (CPRIT) Premio RR150044, Welch Fundación investigación beca C-1930 y por el nacional institutos de salud K22 AI110552 otorgado a NVK. Los fundadores no tenían ningún papel en el diseño del estudio, recopilación de datos y análisis, publicación o preparación del manuscrito.
COPAS FP BioSorter | Union Biometrica | Large object flow cytometer/worm sorter | |
Cytation 5 | BioTek | ||
EL406 Washer Dispenser | BioTek | ||
Multitron Pro | Infors HT | ||
24 Deep-Well RB Block | Thermo Fisher Scientific | CS15124 | |
384-Well plate | Greiner Bio-One | MPG-781091 | |
Nematode Growth Media (NGM) | Amount per liter: 18 grams agar, 3 grams NaCl, 2.5 grams Peptone, 1 mL CaCl2 (1 M), 1 mL MgSO4 (1 M), 25 mL Phospate buffer, and 973 mL of milli-Q water | ||
Slow Killing (SK) plates | Amount per liter: 18 grams agar, 3 grams NaCl, 3.5 grams Peptone, 1 mL CaCl2 (1 M), 1 mL MgSO4 (1 M), 25 mL Phospate buffer, and 973 mL of milli-Q water | ||
Slow Killing (SK) media | Amount per liter: 3 grams NaCl, 3.5 grams Peptone, 1 mL CaCl2 (1 M), 1 mL MgSO4 (1 M), 25 mL Phosphate buffer, and 973 mL of milli-Q water | ||
Lysogeny Broth (LB) | USBiological Life Sciences | L1520 | |
Brian Heart Infusion broth (BHI) | Research Products International Corp | 50-488-526 | |
Worm Bleach Solution | Amount per 100 mL: 10 mL of 5 M NaOH solution, 20 mL of 5% Sodium Hypochlorite Solution, and 70 mL of sterile water | ||
S Basal | Amount per liter: 5.85 grams NaCl, 6 grams KH2PO4, 1 gram K2HPO4, and 1 Liter of milli-Q water | ||
Agar | USBiological Life Sciences | A0930 | |
NaCl | USBiological Life Sciences | S5000 | |
Peptone | USBiological Life Sciences | P3300 | |
CaCl2 | USBiological Life Sciences | ||
MgSO4 | Fisher Scientific | M63-500 | |
Phospate buffer | amount per liter: 132 mL of K2HPO4 (1M) and 868 mL of KH2PO4 (1M) | ||
KH2PO4 | Acros Organics | 7778-77-0 | |
K2HPO4 | USBiological Life Sciences | P5100 | |
5% Sodium Hypochlorite Solution | BICCA | 7495.5-32 | |
NaOH solution | Fisher Scientific | SS255-1 | |
Breathe-easy | Diversified Biotech | BEM-1 | |
SYTOX Orange Nucleic Acid Stain | Fisher Scientific | S11368 | |
Bacterial Strains | |||
P. aeruginosa (PA14) | |||
E. faecalis(OG1RF) | |||
E. coli superfood (OP50) | |||
E. coli RNAi expressing bacteria (HT115) | |||
Worm Strains | |||
glp-4(bn2) (Beanan and Strome, 1992, PMID: 1289064) | |||
PINK-1::GFP reporter (Kang et al., 2018, PMID: 29532717) |