We evaluated the effect of cervical sympathetic ganglion block on nerve repair using artificial nerve conduits. Male beagle dogs were each implanted with an artificial nerve across a 10-mm gap in the left inferior alveolar nerve; left cervical sympathetic ganglion was blocked by injecting 99.5% ethanol via lateral thoracotomy.
Polyglycolic acid collagen (PGA-C) tubes are bio-absorbable nerve tubes filled with collagen of multi-chamber structure, which consist of thin collagen films. Favorable clinical outcomes have been achieved when using these tubes for the treatment of damaged inferior alveolar nerve (IAN). A critical factor for the successful nerve regeneration using PGA-C tubes is blood supply to the surrounding tissue. Cervical sympathetic ganglion block (CSGB) creates a sympathetic blockade in the head and neck region thus increasing blood flow in the area. To ensure an adequate effect, the blockade must be administered with local anesthetics one to two times a day for several consecutive weeks; this poses a challenge when creating animal models for investigating this technique. To address this limitation, we developed an ethanol-induced CSGB in a canine model of long-term increase in blood flow in the orofacial region. We examined whether IAN regeneration via PGA-C tube implantation can be enhanced by this model. Fourteen Beagles were each implanted with a PGA-C tube across a 10-mm gap in the left IAN. The IAN is located within the mandibular canal surrounded by bone, therefore we chose piezoelectric surgery, consisting of ultrasonic waves, for bone processing, in order to minimize the risk of nerve and vessel injury. A good surgical outcome was obtained with this approach. A week after surgery, seven of these dogs were subjected to left CSGB by injection of ethanol. Ethanol-induced CSGB resulted in improved nerve regeneration, suggesting that the increased blood flow effectively promotes nerve regeneration in IAN defects. This canine model can contribute to further research on the long-term effects of CSGB.
In many cases, traumatic injury of the inferior alveolar nerve (IAN) is iatrogenic, being frequently caused by the extraction of the third molar or the placement of dental implants1,2,3. Injury of the IAN can lead to deficits in thermal and touch sensations as well as paresthesia, dysesthesia, hypoesthesia, and allodynia. Nerve injury is treated not only by conservative therapy but also by other methods, including suturing and autograft placement. However, these methods have drawbacks, which often include the lack of symptom improvement and neurological defects at the donor site4,5,6.
The artificial nerve — polyglycolic acid-collagen (PGA-C) tube was originally developed in Japan. It is a bio-absorbable tube with its inner lumen filled with a spongiform collagen7. In animal experiments, this tube was used to enhance nerve regeneration in beagle dogs with peroneal nerve defect, and was shown to promote higher level of recovery than autologous nerve transplantation8. The clinical application of the PGA-C tube began in 2002 in patients with peripheral nerve injuries. Moreover, favorable clinical outcomes have been achieved in the treatment of trigeminal neuropathy (IAN and lingual nerve)9,10,11. A critical factor for successful nerve regeneration using PGA-C tubes is blood supply to the surrounding tissue8. Cervical sympathetic ganglion block (CSGB) creates a sympathetic blockade in the head and neck region and increases blood flow to the respective innervated area12; thus, it has been used in the treatment of complex regional pain syndrome and circulatory insufficiency13,14,15. However, there have been only a few experimental investigations on the efficacy of CSGB in increasing blood flow16,17. To ensure adequate CSGB efficiency, the blockade must be applied together with local anesthetics once or twice daily for several weeks, thus posing a challenge when generating animal models to investigate this technique. To address this limitation, in a previous study, we developed a canine model of long-term increased blood flow in the orofacial region18. The model was generated by performing a CSGB by injecting 99.5% ethanol. We evaluated the oral mucosal blood flow and nasal skin temperature by laser Doppler flowmetry and infrared thermography once per week for 12 weeks. We found that the blood flow of the orofacial region was increased for 7 – 10 weeks in this model.
In the present study, we evaluated the effects of ethanol-induced CSGB on nerve regeneration.
The PGA-C tube was implanted into beagle dogs across a 10-mm gap in the left IAN. A week later, CSGB was performed by injecting ethanol. Three months after surgery, we performed a variety of electrophysiological, histological, and morphological studies to evaluate the effects of CSGB on nerve regeneration. We provide a detailed protocol for IAN reconstruction using a PGA-C tube and ethanol-induced CSGB.
This study was conducted in accordance with the Guiding Principles for the Care and Use of Animals and approved by the Committee for Animal Research of Kyoto University (Kyoto, Japan; authorization number: R-16-16). All efforts were made to minimize animal suffering, and all sections of this report adhere to the ARRIVE (Animal Research: Reporting of in Vivo Experiments) guidelines.
1. Fabrication of the PGA-C tube
2. Surgical Procedure Set-up
3. Anesthesia and Skin Preparation
4. Inferior Alveolar Nerve Reconstruction Using PGA-C tube: Development of the Reconstruction-only Model
5. Ethanol-induced CSGB: Development of the Reconstruction + CSGB Model
6. Electrophysiological Recordings
7. Histological Analysis
We observed an increase in the facial skin temperature of the blocked side 1 week after the left CSGB (Figure 8).
At 3 months post-reconstruction, the PGA-C tube at the reconstruction area was absorbed and regeneration of the inferior alveolar nerve was observed in the reconstruction-only and reconstruction + CSGB groups (Figure 9A, B)18.
SNAP was measurable in both reconstruction sides of the reconstruction + CSGB and reconstruction-only groups. The results of the electrophysiological evaluation are summarized in Table 118. The recovery index and SCV were significantly higher in the reconstruction + CSGB than in the reconstruction-only group.
We observed myelinated nerve fibers at the central and distal segments of the regenerated IAN in the reconstruction-only and reconstruction + CSGB groups (Figure 10A, B)18. The reconstruction-only and reconstruction + CSGB groups showed smaller regenerated myelinated nerve diameters as compared to the normal control group (central segment of the right IAN in the reconstruction group, Figure 10C). Immature myelinated nerve fibers were also observed.
Examination of the reconstruction-only, reconstruction + CSGB groups using TEM showed regenerated myelinated nerve fibers and Schwann cells (Figure 10D, E). Figure 10F shows these results of TEM for the normal control group (central segment of the right IAN in the reconstruction group).
The presence of regenerated axons and Schwann cells was confirmed at the central and distal segments of the reconstruction-only and reconstruction + CSGB groups, by staining with anti-neurofilament (NF) and anti-S100 antibodies, respectively (Figure 11)18.
Morphological evaluation results are summarized in Table 218. The myelinated nerve fiber diameter at the center of the regenerated left IAN segment was 4.27 ± 1.5 µm in the reconstruction group and 5.11 ± 1.98 µm in the CSGB group, while at the distal segment of the regenerated left IAN the diameter was 3.47 ± 1.21 µm in the reconstruction group and 4.53 ± 1.36 µm in the CSGB group. In both cases, the diameter was significantly larger in the CSGB group, which also demonstrated a significantly higher myelinated nerve fiber density and nerve tissue percentage in both the center and the distal segment of the regenerated left IAN. The G-ratio at the center of the regenerated left IAN was 0.75 ± 0.04 in the reconstruction group and 0.68 ± 0.05 in the CSGB group, while at the distal part it was 0.74 ± 0.04 in the reconstruction group and 0.69 ± 0.04 in the CSGB group. Thus, in both cases, the G-ratio was significantly smaller in the CSGB group.
The sample sizes for the reconstruction-only and reconstruction + CSGB groups were n = 7. The statistical analyses for the myelinated nerve fiber diameter and density, G-ratio, and SCV were performed using Dunnett's test. Analysis of the recovery index was performed using an unpaired Student's t-test. The level of statistical significance was set at 5% (p < 0.05).
Figure 1: Polyglycolic acid tube filled with collagen sponge. A) Gross image of the tube. The final dimensions of the nerve conduit were 14 mm length, 3 mm inner diameter, and 50 µm wall thickness. B) Scanning electron micrograph of the tube. This figure was previously published by Shionoya et al.18 and is reprinted with permission. Please click here to view a larger version of this figure.
Figure 2: Left inferior alveolar nerve (IAN) pre- and post-reconstruction. A) Pre-reconstruction image of the left IAN after being exposed by removal of bone. B) Post-reconstruction image of the left IAN reconstructed using a polyglycolic acid-collagen tube. This figure was previously published by Shionoya et al.18 and is reprinted with permission. Please click here to view a larger version of this figure.
Figure 3: Computed tomography imaging of the facial bone after left inferior alveolar nerve reconstruction. The image shows that the mandibular bone plate is in the proper position. Please click here to view a larger version of this figure.
Figure 4: Pre-operative skin markings on the left side chest area prior to surgery. Photograph showing the skin markings before performing the cervical sympathetic ganglion block. The incision line is 20 cm in length. Please click here to view a larger version of this figure.
Figure 5: Operating view of the cervical sympathetic ganglion block: pre-thoracotomy. Image shows the second and third ribs after raising the serratus ventralis and scalenus muscles. Please click here to view a larger version of this figure.
Figure 6: Operating view of the cervical sympathetic ganglion block: post-thoracotomy. Image shows the left cervical sympathetic ganglion after lateral thoracotomy at the second and third intercostal space. Please click here to view a larger version of this figure.
Figure 7: Cervical sympathetic ganglion pre- and post-ethanol injection using a 30 G needle. A) Pre-ethanol injection image of the left cervical sympathetic ganglion. B) Post-ethanol injection image of the left cervical sympathetic ganglion. Please click here to view a larger version of this figure.
Figure 8: Thermogram after left cervical sympathetic ganglion block (CSGB). The thermogram was acquired one week after CSGB by ethanol injection. Note that the facial skin temperature on the left side is higher than on the contralateral side. The color bar indicates temperatures in °C. Please click here to view a larger version of this figure.
Figure 9: Regenerated inferior alveolar nerve (IAN). A) Image of the IAN in the reconstruction-only group. B) Image of the IAN in the reconstruction + CSGB (cervical sympathetic ganglion block) group. Nerve regeneration (region between white arrowheads) is observed in both groups. This figure was previously published by Shionoya et al.18 and is reprinted with permission. Please click here to view a larger version of this figure.
Figure 10: Toluidine blue and transmission electron microscopy analysis of the regenerated inferior alveolar nerve (IAN). A – C) Semi-thin transverse sections of the IAN at 3 months post-reconstruction stained with toluidine blue. Images show the distal segments of the regenerated left IAN in each group, as indicated. D – F) Transmission electron microscopy images from semi-thin sections showing myelinated and non-myelinated nerve fibers (black and white arrowheads, respectively). Scale bars represent 50 µm in (A) – (C) and 5 µm (D) – (F). Normal control: central segment of the right IAN in the reconstruction-only group. This figure was previously published by Shionoya et al.18 and is reprinted with permission. Please click here to view a larger version of this figure.
Figure 11: Immunohistochemical analysis of distal segments of the regenerated left inferior alveolar nerve (IAN). A, B) Sections of the regenerated IAN at 3 months post-reconstruction stained with an anti-neurofilament (NF) antibody for the reconstruction-only group (A) and reconstruction + cervical sympathetic ganglion block (CSGB; B) groups. Black arrowheads indicate regenerated axons. C, D) Sections of the regenerated IAN at 3 months post-reconstruction stained with an anti-S-100 antibody for the reconstruction-only group (C) and reconstruction + CSGB (D) groups. White arrowheads indicate Schwann cells. Scale bars, 50 µm. This figure was previously published by Shionoya et al.18 and is reprinted with permission. Please click here to view a larger version of this figure.
Sensory nerve conduction (m/s) | Recovery index | |
Normal control | 48.5 ± 2.8 | - |
Reconstruction-only group | 36.8 ± 2.9* | 0.22 ± 0.04 |
Reconstruction+CSGB group | 42.0 ± 2.4*# | 0.35 ± 0.06# |
Table 1: Electrophysiological findings in theinferior alveolar nerve (IAN) at 3 months after surgery. Data are presented as mean ± standard deviation (n = 7). Comparisons were made using an unpaired Student's t-test. IAN, inferior alveolar nerve; CSGB, cervical sympathetic ganglion block. *, p < 0.05 in comparison with the normal control group; #, p < 0.05 in comparison with the reconstruction-only group. Normal control: central segment of the right IAN in the reconstruction-only group; Recovery index: ratio of the peak amplitude of the left IAN of the reconstruction-only or reconstruction + CSGB group to the peak amplitude of the normal control. This table was previously published by Shionoya et al.18 and is reprinted with permission.
Myelinated nerve fiber diameter (μm) | Myelinated nerve fiber density (count/100 μm2) | Proportion of nerve tissue (%) | G ratio | ||
Normal control | Center | 8.83 ± 3.11 | 103 ± 8 | 41.3 ± 3.9 | 0.62 ± 0.03 |
Reconstruction-only group | Center | 4.27 ± 1.5* | 126 ± 20* | 11.6 ± 2.1* | 0.75 ± 0.04* |
Distal | 3.47 ± 1.21* | 109 ± 17* | 7.3 ± 2.0* | 0.74 ± 0.04* | |
Reconstruction+CSGB group | Center | 5.11 ± 1.98*# | 140 ± 22*# | 15.9 ± 3.0*# | 0.68 ± 0.05*# |
Distal | 4.53 ± 1.36*$ | 123 ± 15*$ | 12.5 ± 2.1*$ | 0.69 ± 0.04*$ |
Table 2: Morphological findings in the inferior alveolar nerve (IAN) at 3 months after surgery. Data are presented as mean ± standard deviation (n = 7). Comparisons were made using Dunnett's test. IAN, inferior alveolar nerve; CSGB, cervical sympathetic ganglion block. *, p < 0.05 in comparison with the normal control group;*#, p < 0.05 in comparison with the central segment of the left IAN in the reconstruction-only group;*$,p < 0.05 in comparison with the distal end of the left IAN in the reconstruction-only group. Normal control: central segment of the right IAN in the reconstruction-only group; G ratio is the ratio of the myelinated axon diameter to the total myelinated fiber diameter. This table was previously published by Shionoya et al.18 and is reprinted with permission.
We present an efficient method for IAN regeneration by using a bioabsorbable nerve tube in combination with ethanol-induced CSGB. For this study we used dogs, since other animal models, like mice, rats, and rabbits, have a short life expectancy and small body size, and hence cannot be used to perform the precise surgical procedures. As the IAN is located within the mandibular canal surrounded by bone, a surgical technique is necessary to avoid nerve and blood vessel damage when performing nerve reconstruction. An important technical tip for the procedure is to carefully remove the mandibular bone plate in order to minimize the risk of nerve and vessel injury. Traditional burs and micro saws cannot distinguish between hard and soft tissue21. Additionally, these tools tend to slip causing damaging the adjacent tissue, especially the IAN, by accidental contact22. We therefore used piezoelectric surgical tools for the bone processing steps. This is a new and innovative bone surgery technique that uses ultrasonic microvibrations of specialized scalpels. Therefore, soft tissue are not damaged even upon accidental contact with the cutting tips23,24. Microvibrations of 60 – 200 µm/s at 24 – 29 kHz are optimal for cutting elastic mineralized tissue while sparing elastic soft tissue; this is not possible at frequencies above 50 kHz25. Moreover, rotational burs or oscillating saws require a force to counteract the rotation or vibration of the instrument. Compared to these instruments, piezoelectric surgical tools do not need application of extra force and so safe and accurate bone processing is possible26. This is especially important in the hands of a novel user.
Another important aspect in our method is that the bone plate was not fixed using metallic plates but was placed in its original position in the mandible after the placement of the PGA-C tube. The reason for this was to avoid the risk of exposure of the plate to oral mucosal necrosis, which arises when using metallic plates for fixation. However, in some cases the bone plate deviated from the original site. Therefore, it is crucial to perform a CT scan of the facial bone to confirm that the mandibular bone plate is in the proper position after surgery. When using a metallic plate for fixation, tight suturing should be avoided as it may cause oral mucosal necrosis due to blood flow disturbances.
CSGB is an effective treatment for peripheral vascular diseases and pain syndromes of the face and neck13,14,15. However, the mechanisms underlying its therapeutic effects remain unclear. One reason for the lack of research on the therapeutic effects of CSGB is the difficulty in obtaining a consistent and uniform sympatholytic effect. For example, the spread of sympathetic blockade after percutaneous CSGB is not uniform27,28. Mullenheim et al.29 implanted dogs with a polyethylene catheter, after thoracotomy, under the fascia and alongside the upper sympathetic chain, and performed CSGB by injecting lidocaine via the catheter. Although this approach can spread sympathetic blockade at the targeted areas, it carries risks of catheter occlusion or dislocation, as well as infection, especially in long-term experiments. In our canine model of CSGB, the direct injection of 99.5% ethanol produced long-term increases in blood flow to the ipsilateral orofacial region. In our approach, block injection was administered under direct visualization, so CSGB could be performed with precision. Therefore, our approach reduces the risk of uneven spread of the sympatholytic effect and of the sympathetic blockade. This is considered to be advantageous especially in long-term experiments. Moreover, we used thermography to confirm the success of CSGB, since facial skin temperature increases on the block side upon successful CSGB. In this case, thermography is useful, because it is simple and noninvasive. Importantly, the nasal and not the facial skin temperature should be measured, since it is not affected by the dog's hair. Our model could contribute to further research on the therapeutic effects of CSGB. In our previous study, blood flow in the orofacial area increased for 6-11 weeks after cervical sympathetic ganglionectomy. Researchers can choose this alternative method30 if desired.
The limitation of this study is that ethanol-induced CSGB poses the risk of developing permanent Horner's syndrome (ptosis and miosis)31. Other methods, including radiofrequency ablation, phenol, and sympathetic ganglionectomy have been used for performing sympathectomies; however, specifically for sympathectomy of the cervical sympathetic ganglion, only radiofrequency ablation has been employed in clinical practice32,33,34,35. Therefore, radiofrequency ablation and local anesthetics can be considered as an alternative method to ethanol-induced CSGB. Future studies would be necessary to validate how nerve regeneration mediated by a bioabsorbable nerve tube can be enhanced by CSGB with a local anesthetic or radiofrequency ablation.
The authors have nothing to disclose.
This work was supported by the Department of Bioartificial Organs in Kyoto University Institute for Frontier Medical Science. We would like to thank the veterinary staff of the Institute for Frontier Medical Science.
NMP Collagen PS | Nippon Meatpackers | 301-84621 | Atelocollagen extracted from young porcine skin by enzyme treatment |
Surgical clippers | Roboz Surgical Instrument Company | RC-5903 | |
Disposable scalpel (No.15) | Kai medical | 219ABBZX00073000 | |
VarioSurg3 | Nakanishi | VS3-LED-HPSC, E1133 | Piezoelectric surgery for bone processing |
4-0 nylon sutures | Ethicon | 8881H | |
8-0 nylon sutures | Ethicon | 2775G | |
Isepamicin sulfate | Nichi-Iko | 620005641 | |
Disposable scalpel (No.10) | Kai medical | 219ABBZX00073000 | |
30-gauge needle | Nipro | 1134 | |
1-0 absorbable stitches | Ethicon | J347H | |
3-0 Nylon stitches | Ethicon | 8872H | |
Neo Thermo | NEC Avio | TVS-700 | Infrared thermography |
Neuropack Σ | NIHON KOHDEN | MEB-5504 | Orthodromic recorder for electrophysiological recording |
Toluidine Blue | Sigma-Aldrich | T3260-5G | |
Light microscope | Keyence | BZ-9000 | |
Mouse anti-human neurofilament protein monoclonal antibody | DAKO | N1591 | |
Polyclonal rabbit anti-S100 antibody | DAKO | Z0311 | |
Transmission electron microscopy | Hitachi High Technologies | Hitachi H-7000 | |
Dynamic cell count | Keyence | BZ-H1C | Software for morphological evaluation |