Summary

通过检测全小鼠胚胎β乳糖酶活性追踪基因表达

Published: June 26, 2018
doi:

Summary

在这里, 我们描述了检测早期全小鼠胚胎β乳糖酶活性的标准协议, 以及石蜡切片和 counterstaining 的方法。这是一个简单和快速的过程, 以监测基因表达在发展期间, 也可以应用于组织切片, 器官或培养细胞。

Abstract

大肠杆菌 LacZ基因, 编码β-乳糖酶, 主要是作为一个记者的基因表达和作为示踪剂在细胞谱系研究。经典的组织化学反应是基于基片 X-gal 与铁和铁离子的水解, 产生了一种易于可视化的不溶性蓝色沉淀。因此, β-乳糖酶活动作为发展过程中感兴趣基因表达模式的标志。在这里, 我们描述了检测早期全小鼠胚胎β-乳糖酶活性的标准协议, 以及随后的石蜡切片和 counterstaining 方法。此外, 还提供了一个澄清整个胚胎的程序, 以更好地可视化 X-gal 染色在更深的区域的胚胎。通过执行此过程获得一致的结果, 尽管需要优化反应条件以最小化背景活动。还应考虑试验中的局限性, 特别是关于整个芒染色中胚胎的大小。我们的协议为在小鼠发育过程中的β乳糖酶检测提供了一种灵敏和可靠的方法, 可进一步应用于恒温器切片以及整个器官。因此, 在整个胚胎中使用该协议可以很容易地分析整个发育过程中的动态基因表达模式, 而且在石蜡切片后可以评估细胞水平的详细表达。

Introduction

为了描述特定的基因表达模式, 使用报告基因作为标记是最重要的从果蝇到哺乳动物。在涉及转基因和击倒动物的实验中, 大肠杆菌 (大肠杆菌) 的细菌β -乳糖酶基因(LacZ) 是其中最广泛使用的1234. β-乳糖酶 (β-加仑) 催化β-galactosides (如乳糖) 的水解成其单糖 (葡萄糖和半乳糖)5。它最常用的基质是 X-加仑 (5-溴-4-氯-3-哚β D-galactopyranoside), 一种由β-乳糖酶水解而成的糖苷, 它能产生 5-溴-4-氯-3-羟基吲哚和半乳糖。第一种被氧化成二聚体, 当与费里钾和氰化物结合使用时, 产生一种特征不溶的蓝色沉淀 (图 1)6

在三十年前的7,8, LacZ基因开始被用作一个记者基因。通常, LacZ是插入在一个内源启动子下游的开放阅读框架, 所以它可以用于细菌和细胞培养可视化的细胞含有特定的插入物, 以及在转基因动物作为内源性的示踪剂基因表达模式在发展期间9。在这方面, β-乳糖酶活性的可视化在果蝇中得到了广泛的应用, 以了解从单细胞到整个组织的发育和细胞过程。果蝇遗传学倾向于稳定线的生成 , 其中一个含有报告基因LacZ的修饰 P 元素结构入到基因组的随机位置。因此, 当置于增强因子的影响下, 它可能会以组织特定的方式驱动其表达, 这使得在过去的两年中, 对许多基因的表达模式进行系统分析10。此外, 利用转基因小鼠监测LacZ基因的表达也可以通过 loxP 介导的重组来检测基因重组事件, 并在嵌合体分析中定位突变胚胎干细胞衍生物11, 促进LacZ表达的控制在特定组织并且世俗地。此外, 在整个胚胎中, β-乳糖酶活性的检测可能产生不同强度的差异染色模式, 可以在不同的发育阶段方便地观察, 以分析基因表达的时间变化。8,12

在这篇文章中, 我们提出了一个协议, 通过 X-gal 染色在小鼠胚胎发育阶段的整个组织中对基因表达进行可视化。我们提出这种组织化学的方法是一种高度敏感和廉价的技术, 有利于准确检测的标记细胞, 无论是在整个装载标本或在细胞水平后石蜡嵌入组织或胚胎。该方法可使小鼠组织中染色的直接可视化与其他方法13相比具有最小背景。

Protocol

所有实验程序都得到了 CNIC 动物实验伦理学委员会 (Investigaciones Cardiovasculares) 和马德里 Comunidad 国立的批准, 以确保最小的动物痛苦。 1. 从怀孕小鼠中采集胚胎 (从 E8.5 到 E12.5) 通过宫颈脱位或一氧化碳2吸入来牺牲怀孕的老鼠。第一个被观察的阴道插头的天被考虑了胚胎天 0.5 (E0.5)。 将动物放在吸水垫的仰卧位上, 用70% 乙醇清洁老鼠的腹部皮肤。注意…

Representative Results

在这里, 我们显示了应用标准协议的β-乳糖酶组织化学反应使用 X-gal 作为基质在整个小鼠胚胎 (图 1和图 2)。利用该协议, 在不同胚胎发育阶段 (E9.5、E11.5 和 E12.5) 上, 利用 Mt4-mmp 突变小鼠, 在内源性控制下, 对膜型 4-基质金属蛋白酶 (Mt4-mmp) 的表达进行了研究。Mt4-mmp 启动子 (图 3,图 4,<s…

Discussion

大肠杆菌LacZ 基因因其灵敏度高、检测方便, 在基因表达模式研究中得到了广泛的应用。本议定书描述了一种基于酶反应的检测β-gal 的经典方法, 它既简单又快速, 而且价格低廉。这种方法也可以应用在整个芒胚, 完整的器官, 恒温器组织切片或培养细胞没有重大的修改。

这种方法的准确应用导致了解释染色的鲁棒性。但是, 强烈建议同时控制和随后的验证步骤。在这方?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢病理学服务在 Investigaciones Cardiovasculares (CNIC) 中心的技术援助。我们还感谢 Motoharu 博士精机为 Mt4-mmpLacZ小鼠和阿罗约博士提供支持我们的项目和她对手稿的批判性阅读。我们要感谢彼得邦尼对这篇文章的校对。这项工作得到马德里大学欧洲大学的支持, 2017UEM01 授予 C.S.C。

Materials

REAGENTS
2-Propanol SIGMA-ALDRICH 24137-1L-R
Agarose SCHARLAU 50004/ LE3Q2014
Aqueous mounting medium VECTOR LABS H-5501
Synthetic mounting media MERCK 100579
96% Ethanol PROLABO 20824365
99.9% Ethanol absolute SCHARLAU ET00021000
50% Glutaraldehyde solution SIGMA-ALDRICH G6403-100ml
85% Glycerol MERCK 104094
99.9% Glycerol SIGMA-ALDRICH G5516
Magnesium chloride hexahydrate SIGMA-ALDRICH 63064
Nonionic surfactant (Nonidet P-40) SIGMA-ALDRICH 542334
Nuclear Fast Red counterstain SIGMA-ALDRICH N3020
Paraffin pastilles MERCK 111609
Paraformaldehyde SIGMA-ALDRICH 158127-500g
Phosphate buffered saline (tablets) SIGMA-ALDRICH P4417-50TAB
Potassium ferrocyanate MERCK 1049840500
Potassium ferrocyanide MERCK 1049731000
Sodium azide SIGMA-ALDRICH S8032
Sodium deoxycholate SIGMA-ALDRICH 30970
Sodium dihydrogen phosphate monohydrate SIGMA-ALDRICH 106346
Sodium phosphate dibasic dihydrate SIGMA-ALDRICH 71638
Thymol SIGMA-ALDRICH T0501
Tris hydrochloride (Tris HCl) SIGMA-ALDRICH 10812846001 (Roche)
X-GAL VENN NOVA R-0004-1000
Xylene VWR CHEMICALS VWRC28973.363
EQUIPMENT
Disposable plastic cryomolds 15x15x5 mm SAKURA 4566
Rotatory Microtome Leica RM2235
Cassettes Oxford Trade OT-10-9046
Microscope Cover Glasses 24×60 mm VWR ECN631-1575
Microscope slides Thermo Scientific, MENZEL-GLÄSER AGAA000001#12E
Adhesion microscope slides Thermo Scientific, MENZEL-GLÄSER J1820AMNZ
Flotation Water bath Leica HI1210
Disposable Low Profile Microtome Blades Feather UDM-R35
Paraffin oven J.R. SELECTA 2000205
Wax Paraffin dispenser J.R. SELECTA 4000490
Stereomicroscope Leica DM500
Polypropylene microcentrifuge tubes 2.0 mL SIGMA-ALDRICH T2795
Polypropylene microcentrifuge tubes 1.5 mL SIGMA-ALDRICH T9661
Orbital shaker IKA Labortechnik HS250 BASIC
Stirring Hot Plate Bibby HB502
Vortex Shaker IKA Labortechnik MS1
Laboratory scale GRAM FH-2000
Precision scale Sartorius ISO9001
pHmeter Crison Basic 20
Optic fiber Optech PL2000

References

  1. Shuman, H. A., Silhavy, T. J., Beckwith, J. R. Labeling of proteins with beta-galactosidase by gene fusion. Identification of a cytoplasmic membrane component of the Escherichia coli maltose transport system. The Journal of Biological Chemistry. 255, 168-174 (1980).
  2. Cui, C., Wani, M. A., Wight, D., Kopchick, J., Stambrook, P. J. Reporter genes in transgenic mice. Transgenic Research. 3, 182 (1994).
  3. Takahashi, E., et al. Expression analysis of Escherichia coli lacZ reporter gene in transgenic mice. Brain Research. Brain Research Protocols. 5 (2), 159-166 (2000).
  4. Burn, S. F. Detection of β-Galactosidase Activity: X-gal Staining. Methods Mol Biol. 886, 241-250 (2012).
  5. Jacob, F., Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 3, 318-356 (1961).
  6. Pearson, B., Wolf, P. L., Vazquez, J. A comparative study of a series of new indolyl compounds to localize beta-galactosidase in tissues. Laboratory Investigation; a Journal of Technical Methods and Pathology. 12, 1249-1259 (1963).
  7. Kothary, R., et al. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature. 335 (6189), 435-437 (1988).
  8. Kothary, R., et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development. 105 (4), 707-714 (1989).
  9. Blanco, M. J., et al. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo. PLOS ONE. 12 (9), e0184767 (2017).
  10. Hartenstein, V., Jan, Y. N. Studying Drosophila embryogenesis with P-lacZ enhancer trap lines. Roux’s Archives of Developmental Biology. 201 (4), 194-220 (1992).
  11. Gierut, J. J., Jacks, T. E., Haigis, K. M. Whole-mount X-Gal staining of mouse tissues. Cold Spring Harb Protoc. 1 (4), 417-419 (2014).
  12. Cooper, M. A., Zhou, R. β-Galactosidase Staining of LacZ Fusion Proteins in Whole Tissue Preparations. Methods Mol Biol. 1018, 189-197 (2013).
  13. Sundararajan, S., Wakamiya, M., Behringer, R. R., Rivera-Pérez, J. A. A fast and sensitive alternative for β-galactosidase detection in mouse embryos. Development. 139 (23), 4484-4490 (2012).
  14. Wei, Q., Manley, N. R., Condie, B. G. Whole mount in situ hybridization of E8.5 to E11.5 mouse embryos. Journal of Visualized Experiments. 56, 2797 (2011).
  15. Rikimaru, A., et al. Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using beta-galactosidase. Genes Cells. 12 (9), 1091-1100 (2007).
  16. Leight, J. L., Alge, D. L., Maier, A. J., Anseth, K. S. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Biomaterials. 34 (30), 7344-7352 (2013).
  17. Ma, W., Rogers, K., Zbar, B., Schmidt, L. Effects of different fixatives on β-galactosidase activity. Journal of Histochemistry & Cytochemistry. 50 (10), 1421-1424 (2002).
  18. Lojda, Z. Indigogenic methods for glycosidases. II. An improved method for beta-D-galactosidase and its application to localization studies of the enzymes in the intestine and in other tissues. Histochemie. 23 (3), 266-288 (1970).
  19. Trifonov, S., Yamashita, Y., Kase, M., Maruyama, M., Sugimoto, T. Overview and assessment of the histochemical methods and reagents for the detection of β-galactosidase activity in transgenic animals. Anat Sci Int. 91, 56-67 (2016).
  20. Sanchez-Ramos, J., et al. The X-gal Caution in Neural Transplantation Studies. Cell Transplantation. 9 (5), 657-667 (2000).
  21. Weiss, D. J., Liggitt, D., Clark, J. G. In situ histochemical detection of beta-galactosidase activity in lung: assessment of X-Gal reagent in distinguishing lacZ gene expression and endogenous beta-galactosidase activity. Hum Gene Ther. 8 (13), 1545-1554 (1997).
  22. Merkwitz, C., Blaschuk, O., Schulz, A., Ricken, A. M. Comments on Methods to Suppress Endogenous β-Galactosidase Activity in Mouse Tissues Expressing the LacZ Reporter Gene. The Journal of Histochemistry and Cytochemistry. 64 (10), 579-586 (2016).
  23. Buesa, R. J., Peshkov, M. V. Histology without xylene. Annals of Diagnostic Pathology. 13, 246-256 (2009).
  24. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  25. Kandyala, R., Raghavendra, S. P. C., Rajasekharan, S. T. Xylene: An overview of its health hazards and preventive measures. Journal of Oral and Maxillofacial Pathology. 14 (1), 1-5 (2010).
  26. Hinds, H. L. A Comparison of Three Xylene Substitutes. Laboratory Medicine. 17 (12), 752-755 (1986).
  27. Merkwitz, C., Blaschuk, O., Winkler, J., Schulz, A., Prömel, S., Ricken, A. M. Advantages and Limitations of Salmon-Gal/Tetrazolium Salt Histochemistry for the Detection of LacZ Reporter Gene Activity in Murine Epithelial Tissue. Journal of Histochemistry & Cytochemistry. 65 (4), 197-206 (2017).
  28. Levitsky, K. L., Toledo-Aral, J. J., López-Barneo, J., Villadiego, J. Direct confocal acquisition of fluorescence from X-gal staining on thick tissue sections. Scientific Reports. 3, 2937 (2013).
  29. Shen, X., Bao, W., Yu, W., Liang, R., Nguyen, B., Yu Liu, Y. An improved method with high sensitivity and low background in detecting low β-galactosidase expression in mouse embryos. PLoS One. 12 (5), (2017).
  30. Komatsu, Y., Kishigami, S., Mishina, Y. In situ Hybridization Methods for Mouse Whole Mounts and Tissue Sections with and Without Additional β-Galactosidase. Methods Mol Biol. 1092, 1-15 (2014).
  31. Jeong, Y., Epstein, D. J. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development. 130 (16), 3891-3902 (2003).
  32. Eid, R., Koseki, H., Schughart, K. Analysis of LacZ reporter genes in transgenic embryos suggests the presence of several cis-acting regulatory elements in the murine Hoxb-6 gene. Developmental Dynamics. 196 (3), 205-216 (1993).
  33. Will, A. J., et al. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nature Genetics. 49 (10), 1539-1545 (2017).
  34. Stanford, W. L., Cohn, J. B., Cordes, S. P. Gene-trap mutagenesis: past, present and beyond. Nature Reviews Genetics. 2 (10), 756-768 (2001).
  35. Ménoret, S., et al. lacZ transgenic rats tolerant for beta-galactosidase: recipients for gene transfer studies using lacZ as a reporter gene. Human Gene Therapy. 13 (11), 1383-1390 (2002).
  36. Takahashi, M., et al. Establishment of lacZ-transgenic rats: a tool for regenerative research in myocardium. Biochemical and Biophysical Research Communications. 305 (4), 904-908 (2003).
  37. Mozdziak, P. E., Borwornpinyo, S., McCoy, D. W., Petitte, J. N. Development of transgenic chickens expressing bacterial betagalactosidase. Developmental Dynamics. 226 (3), 439-445 (2003).
  38. Mozdziak, P. E., Wu, Q., Bradford, J. M., Pardue, S. L., Borwornpinyo, S., Giamario, C., Petitte, J. N. Identification of the lacZ insertion site and beta-galactosidase expression in transgenic chickens. Cell Tissue Research. 324 (1), 41-53 (2006).
  39. Hartley, K. O., Nutt, S. L., Amaya, E. Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proceedings of the National Academy of Science U.S.A. 99, 1377-1382 (2002).
  40. Scheer, N., Campos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mechanisms of Development. 80 (2), 153-158 (1999).
  41. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  42. Lee, B. Y., et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 5 (2), 187-195 (2006).
  43. Morais, K. S., Guimarães, A. F. R., Ramos, D. A. R., Silva, F. P., de Oliveira, D. M. Long-term exposure to MST-312 leads to telomerase reverse transcriptase overexpression in MCF-7 breast cancer cells. Anti-Cancer Drugs. 28 (7), 750-756 (2017).
  44. Dimri, G. P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Science U.S.A. 92 (20), 9363-9367 (1995).

Play Video

Citer Cet Article
Blanco, M. J., Learte, A. I., Marchena, M. A., Muñoz-Sáez, E., Cid, M. A., Rodríguez-Martín, I., Sánchez-Camacho, C. Tracing Gene Expression Through Detection of β-galactosidase Activity in Whole Mouse Embryos. J. Vis. Exp. (136), e57785, doi:10.3791/57785 (2018).

View Video