Detailed herein are the operation and assembly protocols of a modular microfluidic screening platform for the systematic characterization of colloidal semiconductor nanocrystal syntheses. Through fully adjustable system arrangements, highly efficient spectra collection may be carried out across 4 orders of magnitude reaction time scales within a mass transfer-controlled sampling space.
Colloidal semiconductor nanocrystals, known as quantum dots (QDs), are a rapidly growing class of materials in commercial electronics, such as light emitting diodes (LEDs) and photovoltaics (PVs). Among this material group, inorganic/organic perovskites have demonstrated significant improvement and potential towards high-efficiency, low-cost PV fabrication due to their high charge carrier mobilities and lifetimes. Despite the opportunities for perovskite QDs in large-scale PV and LED applications, the lack of fundamental and comprehensive understanding of their growth pathways has inhibited their adaptation within continuous nanomanufacturing strategies. Traditional flask-based screening approaches are generally expensive, labor-intensive, and imprecise for effectively characterizing the broad parameter space and synthesis variety relevant to colloidal QD reactions. In this work, a fully autonomous microfluidic platform is developed to systematically study the large parameter space associated with the colloidal synthesis of nanocrystals in a continuous flow format. Through the application of a novel translating three-port flow cell and modular reactor extension units, the system may rapidly collect fluorescence and absorption spectra across reactor lengths ranging 3 – 196 cm. The adjustable reactor length not only decouples the residence time from the velocity-dependent mass transfer, it also substantially improves the sampling rates and chemical consumption due to the characterization of 40 unique spectra within a single equilibrated system. Sample rates may reach up to 30,000 unique spectra per day, and the conditions cover 4 orders of magnitude in residence times ranging 100 ms – 17 min. Further applications of this system would substantially improve the rate and precision of the material discovery and screening in future studies. Detailed within this report are the system materials and assembly protocols with a general description of the automated sampling software and offline data processing.
The advent of semiconductor nanocrystals, particularly quantum dots, has driven significant advancements in electronic materials research and manufacturing. For example, quantum dot LEDs1 have already been implemented in commercially available "QLED" displays. More recently among this class of semiconductors, perovskites have sparked substantial interest and research towards high-efficiency and low-cost PV technologies. Since the first demonstration of a perovskite-based PV in 2009,2 the lab-scale power conversion efficiency of perovskite-based solar cells has increased at a rate unparalleled by any PV technology in history.3,4 In addition to the driving interest in perovskite-based PVs, a variety of recent methods describing the facile colloidal synthesis of perovskite nanocrystals have created the opportunity for low-cost, solution-phase processing of perovskite QDs in commercial electronics.5,6,7,8,9,10,11,12,13,14
In the effort towards large-scale nanomanufacturing of colloidal perovskite QDs, a better fundamental understanding of the nanocrystal growth pathways and an effective control of the reaction conditions must first be developed. However, existing studies of these processes have traditionally relied on flask-based approaches. Batch synthesis strategies present a variety of inherent limitations in terms of material characterization and production, but most significantly, flask-based techniques are highly inefficient in screening time and precursor consumption, and demonstrate flask size-dependent mass transfer properties, which inhibit the synthesis consistency.15 To effectively study the growth pathways of colloidal semiconductor nanocrystals across the large variety of reported syntheses procedures and within the broad relevant sample space, a more efficient screening technique is required. Over the past two decades, a range of microfluidic strategies have been developed for studies of colloidal nanocrystals leveraging the substantially lower chemical consumption, the accessibility of high-throughput screening methods, and the potential for a process control implementation in continuous synthesis systems.12,16,17,18,19,20
In this work, we report the design and development of an automated microfluidic platform for the high-throughput in situ studies of colloidal semiconductor nanocrystals. A novel translating flow cell, a highly modular design, and the integration of off-the-shelf tubular reactors and fluidic connections form a unique and adaptable reconfigurable platform with direct applications in the discovery, screening, and optimization of colloidal nanocrystals. Capitalizing on the translational capability of our detection technique (i.e., a three-port flow cell), for the first time, we demonstrate the systematic decoupling of mixing and reaction timescales, while simultaneously improving the sampling efficiency and collection rates over traditional stationary flow cell approaches. The utilization of this platform enables the high-throughput and precise band-gap engineering of colloidal nanocrystal syntheses towards continuous nanomanufacturing strategies.
1. Reactor Assembly
Figure 1. Step-by-step illustration of a sample platform assembly process. The panels shows a step-by-step illustration of a sample platform assembly process detailing (i) the initial arrangement of the translation stage and optical post holders on the mounting bread broad, (ii) the mounting of the precursor tube mounting stage and the flow cell onto optical posts, (iii) the attachment of the microfluidic tubing to the custom cross-junction which is under transparency to reveal flow pathways, (iv) the securing of the precursor tubing while simultaneously positioning the first sampling unit, (v) the subsequent connection of additional sampling units with the reactor tubing run through each module, (vi) the tubing pathway of the reactor extension units, and (vii) the securing of the final sampling unit to support the structure and optical posts. Please click here to view a larger version of this figure.
Note: Due to the wide array of possible configurations, the exact assembly process of the microfluidic platform might vary; however, the general methods are the same for all arrangements. Detailed below and in Figure 1 is the platform assembly process for a two-precursor, multi-phase flow format with a single extension unit after the 14th sampling port.
2. Precursor Preparation
NOTE: The reaction screening system may be applied to the synthesis of various colloidal semiconductor nanocrystals; however, for the purpose of platform development and validation, a CsPbBr3 perovskite synthesis, adapted from Wei et al.6 to better suit flow analyses, was used as a case study reaction. The precursor preparation process is detailed below.
3. Interface Operation
Note: The entirety of the data collection is carried out through the automated reaction platform after the user specifies a series of flow conditions to be tested. The general procedures for operating the user interface during this initial input period are detailed below.
4. Pathlength Corrections
Sample spectra: Utilizing the discussed microfluidic platform, the nucleation and growth stages of colloidal semiconductor nanocrystals at the synthesis temperature can be directly studied by monitoring the time-evolution of the absorption and fluorescence spectra of the formed nanocrystals under uniform mixing conditions. Figure 5A shows an example set of spectra obtained within a single pass of the three-port flow cell. While the emission wavelength distributions alone provide valuable insight towards applications in high-quality LED manufacturing, fitting the absorption and emission bandgap energies within experimentally validated Effective Mass Approximation models would enable the continuous monitoring of nanoparticle size distributions throughout the syntheses.14 Equivalent sets of spectra were obtained at varying flow rates and reactor lengths, which allowed for a data collection across residence times spanning 100 ms – 17 min.
Kinetically tunable nanocrystals: The axisymmetric recirculation patterns formed within the liquid segments of multi-phase flow enables velocity-dependent mass transfer control.21 A study of the velocity-dependent mixing timescale to residence time demonstrated the kinetic tunability in nanocrystal growth pathways for the perovskite QDs (see Figure 5B). Our developed modular platform allows, for the first time, a systematic study of the effect of early-stage mixing time on the final optical properties of formed nanocrystals. Through variations in the reactive slug velocity, while maintaining all other parameters constant, a difference in peak emission wavelengths as great as 25 nm at an equivalent residence time was observed. Further evaluations of the colloidal system illustrated that the observed difference in emission wavelength was maintained at longer residence times, resulting in stable, kinetically tunable nanocrystals.15
Figure 2. Fully assembled automated reaction screening platform. This figure shows a fully assembled automated reaction screening platform with a single reactor extension unit between the 14th and 15th sampling port. Please click here to view a larger version of this figure.
Figure 3. User interface for automated platform operation. This panel shows the user interface, which allows for the control and tuning of parameters such as the syringe flow rates, spectrometer measurement conditions, and sampling position, for the characterization across a broad range of colloidal semiconductor nanocrystal syntheses. Please click here to view a larger version of this figure.
Figure 4. Process for pathlength correction. This panel shows the process for a pathlength correction by port using A. absorption spectra collected over 20 sampling ports with B. the spectra normalized with respect to the absorbance at 455 nm on a solution of colloidal CsPbBr3 perovskites dispersed in toluene and C. respective photoluminescence (PL) spectra D. normalized to the 485 nm signal intensity. Adapted from Epps et al.15 with permission of The Royal Society of Chemistry. Please click here to view a larger version of this figure.
Figure 5.Sample spectra and demonstration of kinetic tunability. These panels show A. the absorption (A) and fluorescence (I) spectra collected within a single pass of the flow cell on a multiphase, reactive CsPbBr3 perovskite system moving at an average slug velocity of approximately 0.2 cm/s, and B. the peak fluorescence wavelength (λP) as a function of the residence time plotted for 11 different average slug velocities ranging from 0.6 to 130 mm/s with sample fluorescence spectra shown at residence times and slugs velocities of 200 s and 1.0 mm/s (top), 0.9 s and 75 mm/s (middle), and 0.9 s and 130 mm/s (bottom). Adapted from Epps et al.15 with permission of The Royal Society of Chemistry. Please click here to view a larger version of this figure.
Figure 6. Process flow chart for the overall software-controlled data collection process. This includes the initialization of the process hardware, the recursive sampling progressions, and the final shutdown of the platform. Adapted from Epps et al.15 with permission of The Royal Society of Chemistry. Please click here to view a larger version of this figure.
Figure 7. Automation software process flow chart for the port location assignment method. The algorithm first runs a specified number of stabilizing passes of the flow cell followed by an optimal port detection through the spectrometer reading of the LED signal intensity. Please click here to view a larger version of this figure.
Figure 8. Sample multi-phase spectra isolation. These panels show the sample multi-phase spectra isolation for A. fluorescence at 500 nm and B. absorbance at 380 nm over time for a solution of perovskites dispersed in toluene. The green region indicates the range of ideal sampling times. Panel C. shows the absorption spectra (fluorescein solution) comparing multi-phase sampling methods as it relates to the slug velocity. "Det" indicates that the plug detection algorithm was applied, and "Avg" indicates that samples were taken over even intervals of time and averaged together. Note that the plug detection method applied to slower moving slugs produced equivalent spectra as the simple average of the higher velocity system. Adapted from Epps et al.15 with permission of The Royal Society of Chemistry. Please click here to view a larger version of this figure.
Figure 9. Demonstration of measurement stability across stage passes. This is a demonstration of the measurement stability across stage passes using A. the absorption signal intensity at 500 nm and B. the fluorescence intensity at 380 nm on a toluene reference normalized by port location and averaged over 30 full passes of the flow cell. The error bars indicate a 95% confidence interval, and no values deviated beyond ± 1% of the average reading. Adapted from Epps et al.15 with permission of The Royal Society of Chemistry. Please click here to view a larger version of this figure.
Automated sampling system: The autonomous operation of the screening platform is carried out with a central control finite state machine. Movement between these states occurs sequentially with multiple recursive segments to allow for operation across a varying number of sampling conditions. The general system controls can be divided into 3 core stages. First, the system begins with an initialization step, which establishes communications through each USB-controlled component, automatically defines file saving pathways, and prompts for initial user inputs. The program then runs through the sampling process for every entered reaction condition until all the desired data has been collected. Finally, a termination process returns all hardware to the starting position before ending the script operation. The general movement within this software is detailed in Figure 6.
Port detection: Within the main automation framework are several critical subfunctions that enable effective and efficient reaction characterizations. First, Figure 7 shows a portion of the "Initialization" segment where the sampling port positions are defined for the translation stage. The port detection function first stabilizes the reactor segment by mimicking flow cell movement along the reactor for 8 full passes.It then detects the optimal port location by sampling the fluorescence intensity across a 1-mm window around the estimated location and selecting the position of the maximum intensity.This location is saved for each port and used as the stage positions during subsequent sampling procedures.
Light source toggling: The efficient absorbance and fluorescence spectra sampling within the three-port flow cell is carried out with an automated light source toggling system. Upon reaching the sampling port, 10 spectra for both absorbance at a 15-ms integration time and fluorescence at a 4-ms integration time may be collected in as little as 400 ms. When moving between sample locations, both the DH Lamp and LED are toggled off. Upon reaching the desired sampling port, the DH Lamp is triggered on, and the absorbance sampling conditions are set on the spectrometer, followed by sample collection. The DH Lamp is then toggled off, while the LED is toggled on. The sampling process is repeated for the fluorescence conditions, and both lights are then turned off.
Slug detection: In multi-phase flow systems, efficient sample collection requires a combination of sampling techniques, which depend upon the velocity of the moving slug. The threshold slug velocity where a detection algorithm becomes less effective than simple averaging was found to occur at approximately 11 mm/s. In the case of lower velocity systems, single spectra sampling is carried out at uniform intervals across the estimated length of 2 fluid slugs (approximately 1 cm). Within the spectra obtained through this sampling process, the 10 optimal spectra in the bulk fluid center of the slug are isolated using a five-point local variance of a given wavelength over time – 400 nm for fluorescence and 380 nm for absorbance – as shown in Figure 8. Within higher fluid velocity systems, however, the available sampling window of a single moving slug surpasses the effective sampling rate of the spectrometer. In these instances, averaging together 10 spectra collected over uniform intervals was found to be sufficient.
System specs: Through the application of multiple 87-cm extension units, sampling ports may be positioned at reactor tubing lengths varying 3 – 196 cm. The combination of varying flow rates and flow-cell movement enables in situ spectral characterization at residence times ranging 100 ms – 17 minutes with a sampling rate as high as 30,000 spectra per day. Furthermore, each absorption or fluorescence spectrum was obtained with notably low chemical consumption, requiring only 2 µL per spectra at the time of sampling and 20 µL per spectra overall (from startup to shutdown). This high sampling rate and efficiency can be attributed to the collection of up to 40 unique spectra within a single equilibrated system through the translating flow cell. After applying the reactor stabilization, port alignment, and pathlength correction processes, the platform was shown to be accurate for over 30 full passes of the flow cell (Figure 9). In a characterization of the respective light source signal intensities on a toluene reference, it was found that the error in counts of a given wavelength for each port remained within 1% across all 30 passes in both the fluorescence and absorption signals. This stability in the reactor measurement system enabled extensive material discovery, screening, and optimization studies to be carried out with minimal manual interference, resulting in more consistent data collection from the same batch of precursors.
Extended sampling space: The relationship between fluid velocity and residence time has often been confounded in existing synthesis screening studies. For characterizations implementing a stationary flow cell, for example, variable residence times are obtained by adjusting net fluid velocities. However, as detailed by the previously discussed evaluation of kinetic tunability in nanocrystal growth, this method of reaction characterization is likely insufficient for studies of a wide range of colloidal semiconductor syntheses with fast nucleation and growth kinetics. Decoupling the residence time from the fluid velocity by applying a portable sampling system expands the sampling space in a manner that has not been explored previously. Thus, the developed modular technology enables discovery and exploratory studies of the next generation of colloidal nanomaterials with significantly enhanced precision and control over the synthesis conditions.
The authors have nothing to disclose.
The authors gratefully acknowledge the financial support provided by North Carolina State University. Milad Abolhasani and Robert W. Epps gratefully acknowledge financial support from the UNC Research Opportunities Initiative (UNC-ROI) grant.
Toluene | Fisher Scientific | AC364410010 | 99.85% extra over molecular sieves |
Oleic acid | Sigma Aldrich | 364525 ALDRICH | technical grade 90% |
Cesium hydroxide (50 wt% in water) | Sigma Aldrich | 232041 ALDRICH | 50 wt% in water > 99.9% trace metals |
Lead(II) oxide | Sigma Aldrich | 211907 SIGMA-ALDRICH | > 99.9% trace metals basis |
Tetraoctylammonium bromide | Sigma Aldrich | 294136 ALDRICH | 98% |
1/16" OD, 0.04" ID FEP tubing | MicroSolv | 48410-40 | |
1/16" OD, 0.02" ID ETFE tubing | MicroSolv | 48510-20 | |
0.02" thru hole PEEK Tee | IDEX Health & Science | P-712 | |
1/4-28 ETFE flangeless ferrule for 1/16" | IDEX Health & Science | P-200N | |
1/4-28 PEEK flangeless nut for 1/16" | IDEX Health & Science | P-230 | |
4-way PEEK L-valve | IDEX Health & Science | V-100L | |
Syringe pump | Harvard Apparatus | 70-3007 | |
8 mL stainless steel syringe | Harvard Apparatus | 70-2267 | |
25 mL glass syringe | Scientific Glass Engineering | 25MDF-LL-GT | |
Optical breadboard | ThorLabs | MB1224 | |
300 mm translation stage | ThorLabs | LTS300 | |
Optical post | ThorLabs | TR2-4 | TR2, TR3, or TR4 |
Optical post holder | ThorLabs | PH4-6 | PH4 or PH6 |
365 nm LED | ThorLabs | M365LP1 | |
LED driver | ThorLabs | LEDD1B | |
600 micron patch cord | Ocean Optics | QP600-1-SR | |
Deuterium-halogen light source | Ocean Optics | DH-2000-BAL | |
Miniature spectrometer | Ocean Optics | FLAME-S-XR1-ES | |
Multifuction I/O device (DAQ) | National Instruments | USB-6001 | |
Virtual Instrument Software | National Instruments | LabVIEW 2015 SP1 |