Summary

CARIP 和芯片序列: 鉴定胚胎干细胞中染色质相关 rna 和蛋白质-DNA 相互作用的方法

Published: May 25, 2018
doi:

Summary

在这里, 我们描述了执行芯片序列和 CARIP 的方法, 包括用于下一代测序的库准备, 以生成 ES 细胞中的全球 epigenomic 和染色质相关的 RNA 图谱。

Abstract

胚胎干细胞的自我更新和分化受外部信号和转录因子的内在网络、表观遗传调控、combinatorially 对基因组蛋白的转换后修饰的制约。附近基因的表达状态。RNA 也被证明与各种各样的蛋白质交互调控染色质动力学和基因表达。染色质相关 RNA 免疫沉淀 (CARIP) 其次是下一代测序 (CARIP 序列) 是一种新的方法来调查与染色质蛋白相关的 rna, 而染色质免疫沉淀其次是下一代测序 (芯片序列) 是一种功能强大的基因组学技术, 用于在 ES 细胞的全球尺度上绘制出蛋白、转录因子和表观遗传修饰符的平移后修饰位置。在这里, 我们描述了执行 CARIP 和芯片序列的方法, 包括用于下一代测序的库构造, 以生成 ES 细胞中的全球染色质相关 RNA 和 epigenomic 图。

Introduction

胚胎干细胞的命运决定由细胞外信号和一系列转录调控器之间的通讯调节, 其中包括组蛋白修饰语和组蛋白尾的翻译后修饰。这些相互作用促进染色质可达性和染色质的包装成两种状态之一: 染色质, 是开放和转录活跃的, 染色质, 这是紧凑的, 一般转录不活跃。转录因子与 DNA 序列特异的结合亲和性和表观遗传修饰, euchromatic 区域参与控制基因表达。下一代测序方法, 包括芯片序列1, 在映射全基因组转录网络 (ES 细胞自我更新和干细胞234) 方面发挥了重要作用. ,5,6。此外, 虽然 rna immunopreciation 其次是下一代测序 (RIP 序列)7对 RNA-蛋白质相互作用的评价表明, DNA 结合蛋白与 rna 相互作用来调节转录事件7,8,9,10,11,12, 很少有研究调查了与染色质12相关的 rna 的全基因组定位, 或者 rna 和组蛋白修饰之间的全球相互作用。长非编码 rna (lncRNAs) 是一种 rna, 它已被发现来调节染色质相关蛋白的活性13,14,15。例如, Xist 是一种 lncRNA, 通过招募阻遏1617, 在雌性哺乳动物细胞中调节一个 X 染色体的失活。然而, 与染色质相关的 rna 的全谱在很大程度上是未知的。在这里, 我们描述了一个新的协议, 染色质相关的 RNA 免疫沉淀 (CARIP) 其次是下一代测序 (CARIP 序列), 以确定染色质相关 rna 在全基因组的基础上的 ES 细胞, 包括图书馆准备下一代测序, 和芯片序列, 以映射全球占用的组蛋白修饰, 转录因子, 和表观遗传修饰。与其他 RIP 序列方法7不同, CARIP 序列包括交联和超声波步骤, 它允许直接识别与染色质相关的 rna。在一起, 芯片序列是一个强有力的工具, 以确定全基因组范围内的蛋白质-DNA 相互作用, 而 CARIP 是一个强大的方法来调查与染色质成分相关的 rna。

Protocol

1. 小鼠 ES 细胞在无饲养条件下的培养。 注意: 小鼠 ES 细胞是传统的在培养基上培养的细胞培养皿上涂有明胶和单层小鼠胚胎成纤维细胞 (MEF), 已 mitotically 灭活 (iMEFs)。然而, MEFs 应在下游表观或表达分析之前被删除, 以防止与 MEF 相关的染色质和 RNA 的污染。 给料层的制备: 在水中加入2毫升0.1% 的明胶, 并在37摄氏度下孵育20-30 分钟, 明胶涂层 a 6 井细胞培养板。 ?…

Representative Results

我们通过这个芯片序列协议6成功地审问了 ES 细胞中 H3K4me3、H3K4me2 和 KDM5B 的全基因组绑定。ES 细胞是在无馈线条件下培养的 (图 1), 并如上文所述交叉链接。超声波随后按照芯片序列协议步骤3.2 所述执行, 并通过在2% 琼脂糖凝胶上运行 DNA 进行评估 (图 2)。接下来, 按照步骤4中的描述执行芯片, 并按照步骤6中的?…

Discussion

在 ES 细胞中, 芯片序列是评价全球蛋白质-DNA 相互作用 (e. g)、转录因子/组蛋白修饰酶/组蛋白修饰和 DNA 的有效方法, 而新开发的 CARIP 序列协议在审问基因组范围内的 rna 与染色质成分的关联。芯片序列是一种基本的工具, 用于评估 ES 细胞和其他细胞类型的表观景观。芯片序列和 CARIP 库的质量在很大程度上依赖于芯片级抗体。对芯片序列的抗体的适用性可以通过执行芯片 PCR 的经验来确定, ?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韦恩州立大学 Karmanos 癌症研究所的支持, 由国家心脏、肺和血液研究所 (1K22HL126842-01A1) 授予 B.L.K。这项工作利用韦恩州立大学高性能计算网格计算资源 ()。我们感谢集集 Kurup 对 CARIP 数据分析的帮助。

作者的贡献:

B.L.K. 构思了 CARIP 法, 设计并进行了芯片序列和 CARIP 的实验, 分析了测序数据, 起草了手稿。所有作者都已阅读并批准了本手稿的最终版本。

Materials

Mouse leukemia inhibitory factor (ESGRO LIF) EMD Millipore 106 or 107 units
GSK3β inhibitor CHIR99021 (GSK3i) Stemgent Solvent: DMSO 10mM
MEK inhibitor PD0325901 (MEKi) Stemgent Solvent: DMSO 10mM
Dulbecco's Modified Eagle Medium (DMEM), high glucose Invitrogen 11965092
PBS (phosphate buffered saline) Invitrogen 10010031
Trypsin-EDTA (0.25%), phenol red Gibco 25200056
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140122
2-Mercaptoethanol (50 mM) Gibco 31350010
MEM Non-Essential Amino Acids Solution (100X) Gibco 11140076
EmbryoMax ES Cell Qualified Fetal Bovine Serum, 500 ml EMD Millipore ES-009-B
EmbryoMax 0.1% Gelatin Solution EMD Millipore ES-006-B
Glycine Sigma G7126-500G 1.25 M stock conentration in water
Formaldehyde solution Sigma F8775-500ML
TE (Tris EDTA) pH 8.0 1X Quality Biological 351-011-131
Phenylmethanesulfonyl fluoride (PMSF) solution Sigma 93482-250ML-F
cOmplete Protease Inhibitor Cocktail Roche 11697498001
Sodium dodecyl sulfate solution (20%) Quality Biological A611-0837-10
Q125 sonifier Qsonica 4422
Triton X-100 solution Sigma 93443-100ML
Sodium deoxycholate Sigma 30970
NaCl Sigma S7653
Dynabeads Protein G for Immunoprecipitation Invitrogen 10004D
Dynabeads Protein A for Immunoprecipitation Invitrogen 10002D
Dynabeads Protein A/Protein G and Magnet Starter Pack Invitrogen 10015D
Lithium chloride Sigma L4408
IGEPAL CA-630 Sigma I8896
RNeasy Mini Kit Qiagen 74104
Dynabeads mRNA Purification Kit (for mRNA purification from total RNA preps) Invitrogen 61006
SuperScript Double-Stranded cDNA Synthesis Kit Invitrogen 11917010
QIAquick PCR Purification Kit Qiagen 28104
End-It DNA End-Repair Kit Lucigen ER81050
Klenow Fragment (3'→5' exo-) NEB M0212L
dATP (10 mM) Invitrogen 18252015
T4 DNA ligase NEB M0202L
TrackIt 1 Kb Plus DNA Ladder Invitrogen 10488085
E-gel EX agarose gels, 2% Invitrogen G402002
Phusion high-fidelity 2X master mix with HF buffer Thermo Fisher F531LPM
ChIPAb+ Trimethyl-Histone H3 (Lys4) – ChIP Validated Antibody EMD Millipore 17-614
Anti-Histone H3 (di methyl K4) antibody [Y47] – ChIP Grade (ab32356) Abcam ab32356
Corning Costar Flat Bottom Cell Culture Plates (6-well) Fisher 720083
Falcon Standard Tissue Culture Dishes (10cm) Fisher 08772E
Bioruptor pico Diagenode B01010001
Qubit Flurometer 2.0 Thermo Fisher
Qubit dsDNA HS Assay Kit Thermo Fisher Q32851
MinElute Reaction Cleanup Kit Qiagen 28204
MinElute Gel Extraction Kit Qiagen 28604
Anti-Histone H4 (tri methyl K20) antibody – ChIP Grade (ab9053) Abcam ab9053
Labquake rotator Thermo Fisher 400110Q
Illumina HiSeq platform Illumina
TURBO DNase Invitrogen AM2238

References

  1. Barski, A., et al. High-resolution profiling of histone methylations in the human genome. Cell. 129 (4), 823-837 (2007).
  2. Chen, X., et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 133 (6), 1106-1117 (2008).
  3. Boyer, L. A., et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122 (6), 947-956 (2005).
  4. Kim, J., Chu, J., Shen, X., Wang, J., Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 132 (6), 1049-1061 (2008).
  5. Kidder, B. L., Hu, G., Yu, Z. X., Liu, C., Zhao, K. Extended self-renewal and accelerated reprogramming in the absence of Kdm5b. Mol Cell Biol. 33, 4793-4810 (2013).
  6. Kidder, B. L., Hu, G., Zhao, K. KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation. Genome Biol. 15 (2), R32 (2014).
  7. Zhao, J., et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 40 (6), 939-953 (2010).
  8. Baltz, A. G., et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 46 (5), 674-690 (2012).
  9. Castello, A., et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 149 (6), 1393-1406 (2012).
  10. Hudson, W. H., Ortlund, E. A. The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Bio. 15 (11), 749-760 (2014).
  11. Khalil, A. M., et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. P Natl Acad Sci USA. 106 (28), 11667-11672 (2009).
  12. Hendrickson, D. G., Kelley, D. R., Tenen, D., Bernstein, B., Rinn, J. L. Widespread RNA binding by chromatin-associated proteins. Genome Biol. 17, 28 (2016).
  13. Kelley, R. L., Kuroda, M. I. Noncoding RNA genes in dosage compensation and imprinting. Cell. 103 (1), 9-12 (2000).
  14. Koziol, M. J., Rinn, J. L. RNA traffic control of chromatin complexes. Curr Opin Genet Dev. 20 (2), 142-148 (2010).
  15. Mercer, T. R., Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Bio. 20 (3), 300-307 (2013).
  16. Chu, C., et al. Systematic discovery of Xist RNA binding proteins. Cell. 161 (2), 404-416 (2015).
  17. Mak, W., et al. Reactivation of the paternal X chromosome in early mouse embryos. Science. 303 (5658), 666-669 (2004).
  18. Garfield, A. S. Derivation of primary mouse embryonic fibroblast (PMEF) cultures. Methods Mol Biol. 633, 19-27 (2010).
  19. Conner, D. A. Mouse embryo fibroblast (MEF) feeder cell preparation. Curr Protoc Mol Biol. , (2001).
  20. Ying, Q. L., et al. The ground state of embryonic stem cell self-renewal. Nature. 453 (7194), 519-523 (2008).
  21. Langmead, B., Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9 (4), 357-359 (2012).
  22. Zang, C., et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics. 25 (15), 1952-1958 (2009).
  23. Zhang, Y., et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9 (9), R137 (2008).
  24. Liu, T. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Methods Mol Biol. 1150, 81-95 (2014).
  25. Kidder, B. L., Hu, G., Zhao, K. ChIP-Seq: technical considerations for obtaining high-quality data. Nat Immunol. 12 (10), 918-922 (2011).
  26. Quail, M. A., et al. A large genome center’s improvements to the Illumina sequencing system. Nat Methods. 5 (12), 1005-1010 (2008).
  27. Schmidl, C., Rendeiro, A. F., Sheffield, N. C., Bock, C. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods. 12 (10), 963-965 (2015).

Play Video

Citer Cet Article
Kidder, B. L. CARIP-Seq and ChIP-Seq: Methods to Identify Chromatin-Associated RNAs and Protein-DNA Interactions in Embryonic Stem Cells. J. Vis. Exp. (135), e57481, doi:10.3791/57481 (2018).

View Video