Aqui, apresentamos um protocolo para observar os fluxos vortical instáveis sobre uma asa delta utilizando uma técnica de visualização de fluxo de fumaça modificados e investigar o mecanismo responsável por oscilações dos locais de avaria vórtice de ponta.
É sabido que o campo de fluxo ao longo de uma asa delta é dominado por um par de vórtices de ponta rotativa de contador (LEV). No entanto, seu mecanismo não é bem compreendido. A técnica de visualização de fluxo é um método não-intrusiva promissor para ilustrar o campo de fluxo complexo espacial e temporalmente. Uma configuração de visualização de fluxo básico consiste em um laser de alta potência e lentes ópticas para gerar a folha do laser, uma câmera, um gerador de partículas de marcador e um processador de dados. A instalação do túnel de vento, as especificações dos dispositivos envolvidos e as configurações de parâmetro correspondente dependem as características de fluxo a ser obtido.
Visualização de fluxo normal fumaça fio usa um fio de fumo para demonstrar a linha de fluxo. No entanto, o desempenho desse método é limitado pela resolução espacial pobre quando ele é conduzido em um campo de fluxo complexo. Por isso, desenvolveu-se uma técnica de visualização melhorada fluxo de fumaça. Esta técnica ilustra o campo de fluxo global de LEV em grande escala e a estrutura de fluxo de camada de cisalhamento em pequena escala ao mesmo tempo, fornecendo uma valiosa referência para medição de Velocimetria (PIV) de imagem posteriormente detalhadas das partículas.
Neste trabalho, é demonstrada a aplicação da visualização melhorada fluxo de fumaça e medição de PIV para estudar os fenômenos de fluxo instável sobre uma asa delta. O procedimento e cuidados para a realização do experimento são listados, incluindo a instalação do túnel de vento, aquisição de dados e processamento de dados. Os resultados representativos mostram que esses métodos de visualização duas fluxo técnicas eficazes para investigar o campo de fluxo tridimensional, qualitativa e quantitativamente.
Medição do fluxo de campo através de técnicas de visualização é uma metodologia básica em engenharia de fluidos. Entre as técnicas de visualização diferentes, visualização de fluxo de fio de fumaça em experiências de túnel de vento e visualização de tintura em experiências de túnel de água são os mais utilizados para ilustrar a estruturas de fluxo qualitativamente. PIV e laser Doppler anemometry (LDA) são duas técnicas quantitativas típico1.
Na visualização fluxo de fio de fumaça, fumaça linha é geradas a partir de gotículas de óleo em um fio de aquecimento ou injectada a partir do gerador de fumo/contêiner externo durante os experimentos. Luzes de alta potência ou folhas do laser são usadas para iluminar a fumaça linha. Imagens então são gravadas para posterior análise. Este é um simples, mas muito útil fluxo visualização método2. No entanto, a eficácia desse método pode ser limitada por vários fatores, tais como a curta duração de fios de fumos, o campo de fluxo tridimensional complexo, a velocidade relativamente elevada do fluxo e a eficiência de geração de fumaça3.
Nas medições de PIV, um corte transversal de um campo de fluxo com partículas entranhados é iluminado por uma folha do laser, e posições instantâneas das partículas na presente secção são capturadas por uma câmera de alta velocidade. Dentro de um extremamente pequeno intervalo de tempo, um par de imagens é gravado. Dividindo as imagens em uma grade de áreas de interrogatório e calculando o médio movimento de partículas em áreas de interrogatório por meio de funções de correlação cruzada, o mapa de vetor velocidade instantânea nesta secção observada pode ser obtido. No entanto, também é sabido que os compromissos devem ser atingidos por factores incluindo o tamanho da janela de observação, a resolução do mapa velocidade, a magnitude da velocidade no plano, o intervalo de tempo entre o par de imagens, a velocidade ortogonal magnitude e a partícula densidade4. Portanto, muitos experimentos exploratórios podem ser necessários para otimizar as configurações experimentais. Seria caro e demorado para investigar um campo desconhecido e complexo fluxo com PIV medição sozinho5,6. Tendo em conta as preocupações acima, uma estratégia para combinar a visualização do fluxo de fumaça e medição PIV é proposta e demonstrada aqui para estudar o fluxo complexo sobre uma asa delta Delgada.
Numerosos estudos de LEV fluxos sobre asas delta foram realizados7,8, com técnicas de visualização de fluxo usado como as principais ferramentas. Muitos fenômenos de fluxo interessantes foram observados: tipo espiral e bolha tipo vórtice avarias9,10, uma tesoura instável camada subestrutura11,12, oscilações das localizações de esgotamento LEV13 , e efeitos de lançamento e guinada ângulos14,15,16 , nas estruturas de fluxo. No entanto, os mecanismos subjacentes de alguns fenômenos instáveis nos fluxos de asa delta permanecem pouco claras7. Neste trabalho, a visualização de fluxo de fumaça é melhorada usando as mesmas partículas semeadura utilizadas na medição de PIV, em vez de um fio de fumaça. Esta melhoria grandemente simplifica a operação da visualização e aumenta a qualidade das imagens. Baseado nos resultados de visualização melhorada fluxo de fumaça, medição de PIV enfoca aqueles campos de fluxo de interesse para adquirir as informações quantitativas.
Aqui, uma descrição detalhada é fornecida para explicar como realizar uma experiência de visualização de fluxo em um túnel de vento e para investigar fenômenos de fluxo instável sobre uma asa delta. Dois métodos de visualização, a visualização melhorada fluxo de fumaça e a medição de PIV, são usados juntos neste experimento. O procedimento inclui orientação passo a passo para instalação e parâmetro de regulação. Resultados típicos são demonstrados para mostrar a vantagem de combinar estes dois métodos para medir o campo de fluxo complexo espacial e temporalmente.
Este artigo apresenta a dois métodos de visualização de fluxo, a visualização melhorada fluxo de fumaça e a medição de PIV, para investigar a estrutura de fluxo sobre a asa delta, qualitativa e quantitativamente. Os procedimentos gerais da experiência são descritos passo a passo. As configurações desses dois métodos são quase a mesma coisa, enquanto os dispositivos envolvidos são diferentes. O princípio básico desses métodos de visualização dois fluxo é para iluminar as partículas do fluxo através …
The authors have nothing to disclose.
Os autores gostaria de agradecer o Conselho de bolsas de investigação de Hong Kong (n. GRF526913), Hong Kong-inovação e tecnologia Comissão (n. ITS/334/15FP) e nos escritório da Naval Research Global (n. N00014-16-1-2161) para apoio financeiro.
532 nm Nd:YAG laser | Quantel Laser | Evergreen 600mJ | |
High speed camera | Dantec Dynamic | HiSense 4M | |
camera lens | Tamron | SP AF180mm F/3.5 Di | |
PIV recording and processing software | Dantec Dynamic | DynamicStudio | |
cylindrical lens | Newport | Φ=12 mm | |
convex lens | Newport | f=700 mm | |
neutral density filter | Newport | ||
Calibration target | custom made | ||
aerosol generator | TSI | TSI 9307-6 | |
PULSE GENERATOR | Berkeley Nucleonics Corp | BNC 575 | |
continuous laser | APGL-FN-532-1W | ||
Digital camera | Nikon | Nikon D5200 | |
Image processing | Matlab | custom code | |
wind tunnel support | custom made | ||
laser level | BOSCH | GLL3-15X | |
angle meter | BOSCH | GAM220 |