Summary

Equivalentes de tridimensional tecido humano inflamatória da gengiva

Published: April 03, 2018
doi:

Summary

O objetivo do protocolo é construir um modelo de gengiva humana inflamatória em vitro. Este modelo de tecido co cultiva três tipos de células humanas, HaCaT queratinócitos, fibroblastos gengivais e macrófagos THP-1, sob condições tridimensionais. Este modelo pode ser aplicado para investigar doenças periodontais, como gengivite e periodontite.

Abstract

Doenças periodontais (tais como gengivite e periodontite) são as principais causas de perda dentária em adultos. Inflamação na gengiva é fundamental fisiopatologia das doenças periodontais. Atuais modelos experimentais de doenças periodontais foram estabelecidos em vários tipos de animais. No entanto, a fisiopatologia de modelos animais é diferente dos seres humanos, dificultando a mecanismos celulares e moleculares de analisar e avaliar novos medicamentos para doenças periodontais. Aqui, apresentamos um protocolo detalhado para reconstruir equivalentes de tecido humano inflamatória da gengiva (iGTE) em vitro. Primeiro construímos equivalentes de tecido humano da gengiva (GTE), utilizando dois tipos de células humanas, incluindo fibroblastos gengivais humanos (HGF) e pele humana queratinócitos epidérmicos (HaCaT), sob condições tridimensionais. Criamos um modelo de ferida usando um furador de tecido para fazer um buraco na GTE. Em seguida, humanos monócitos THP-1 misturados com gel de colágeno são injetados no furo do GTE. Por adimistration de 10 ng/mL phorbol myristate 12 13-acetato (PMA) para 72 h, THP-1 células diferenciadas em macrófagos aos focos inflamatórios da forma no GTE (iGTE) (IGTE também pode ser stumilated com 2 µ g/mL de lipopolissacarídeos (LPS) para 48 h iniciar a inflamação ). IGTE é o primeiro em vitro modelo da gengiva inflamatória usando células humanas com uma arquitetura tridimensional. IGTE reflete grandes mudanças patológicas (immunocytes activition, interações intracelulares, entre fibryoblasts, células epiteliais, monócitos e macrófagos) em doenças periodontais. GTE, GTE ferido e iGTE podem ser usados como ferramentas versáteis para estudar a cicatrização de feridas, regeneração tecidual, inflamação, interação célula-célula e tela potenciais medicamentos para as doenças periodontais.

Introduction

As doenças periodontais são a principal causa de perda dentária em adultos. Gengivite e periodontite é as doenças periodontais mais comuns. Ambos apresentam alterações inflamatórias mediada por biofilme agudas ou crônicas na gengiva. A gengivite é caracterizada por inflamação aguda, Considerando que a periodontite apresenta-se geralmente como uma inflamação crônica. A nível histológico, componentes bacterianas desencadear a ativação de células do sistema imunológico, tais como macrófagos, linfócitos, plasmócitos e mastócitos1,2. Estas células imunes, especialmente os macrófagos, interagirem com as células locais (incluindo células epiteliais gengivais, fibroblastos, células endoteliais e osteoblastos) resultando em lesões inflamatórias no tecido periodontal3,4. Modelos experimentais de doenças periodontais foram estabelecidos em vários tipos de animais, como ratos, hamsters, coelhos, furões, caninos e primatas. No entanto, a fisiopatologia de modelos animais é diferente dos seres humanos, dificultando a mecanismos celulares e moleculares de analisar e avaliar novos medicamentos de doenças periodontais5. Co de cultivo de bactérias periodontais e células epiteliais oral humanas monocamada serviu para investigar o mecanismo das infecções periodontais6. No entanto, culturas de monocamadas de células orais faltam a arquitetura de celulares tridimensional (3D) do tecido intacto; Portanto, eles não podem imitar a situação em vitro .

Aqui, equivalentes 3D tecido humano inflamatória da gengiva (iGTE) são criados para representar doenças periodontais em vitro. Este modelo 3D das doenças periodontais ocupa uma posição intermediária entre as culturas de células monocamadas e modelos animais. Três tipos de células humanas, incluindo HaCaT queratinócitos, fibroblastos gengivais e THP-1 macrófagos, são co cultivados em gel de colágeno e estimulados pela inflamatórios iniciadores para construir iGTE. IGTE intimamente simula as condições na vivo de diferenciação celular, interação célula-célula e ativação de macrófagos na gengiva. Este modelo tem muitas aplicações possíveis drogas triagem e testando novas abordagens farmacológicas em doenças periodontais, bem como para analisar os mecanismos celulares e moleculares na cicatrização de feridas, inflamação e regeneração de tecidos.

Protocol

Este protocolo é projetado para criar modelos de gengivite, modelos de ferimento gengival e equivalentes de tecido gengival humano. Pele humana queratinócitos epidérmicos (HaCaT) foram gentilmente cedidos do Professor Norbert E. Fusenig do Deutsches Krebsforschungszentrum (Heidelberg, Alemanha)7. Fibroblastos gengivais humanos (HGFs) foram isolados a partir de tecidos gengivais, de acordo com os protocolos anteriormente publicados8. Foi obtido consentimento previamente, …

Representative Results

As células HaCaT exibidas morfologia típica queratinócito sob observação microscópica de contraste de fase (Figura 2A). Scanner elétron microscópico (SEM) imagens mostrou que as superfícies de célula HaCaT estavam cobertas por muitos microvilli. Conexões intercelulares entre células de HaCaT foram mediadas por processos de membrana (Figura 2B). HaCaT células expressaram epitélio gengival marcador K8/18<sup class="xr…

Discussion

Este protocolo é baseado em métodos de criação de equivalentes de tecido gengival e equivalentes de tecido adiposo subcutâneos descritos por anteriores relatórios8,21,22. Embora este seja um método simples e fácil, algumas etapas requerem atenção especial. Por exemplo, a mistura de colágeno deve ser mantida no gelo até o uso para evitar a formação de gel na solução. Ao adicionar a mistura de colágeno para a inse…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado em parte pela sociedade do Japão para o promoção da ciência (JSPS) subsídio para a investigação científica (26861689 e 17 K 11813). Os autores gostaria de agradecer o Sr. Nathaniel Green para revisão.

Materials

Collagen type I-A Nitta Gelatin Inc For making dermis of GTE
MEM-alpha Thermo Fisher Scientific 11900073 Cell culture medium
Cell Culture Insert (for 24-well plate), pore size 3.0 μm Corning, Inc. 353096 For tissue culture
GlutaMAX Thermo Fisher Scientific 35050061 Cell culture reagent
DMEM Thermo Fisher Scientific 31600034 Cell culture medium
KnockOut Serum Replacement Thermo Fisher Scientific 10828028 Cell culture reagent
Tissue puncher Shibata system service co., LTD SP-703 For punching holes in GTE
RPMI 1640 Thermo Fisher Scientific 31800022 Cell culture medium
BSA Sigma-Aldrich A3294 For immunostaining
Hoechst 33342 (NucBlue Live Cell stain) Thermo Fisher Scientific R37605 For labeling nuclei
Fluorescence mount medium Dako For mounting samples after immunostaining
Anti-Cytokeratin 8+18 antibody [5D3] abcam ab17139 For identifying epithelium
Scaning electron microscope Hitachi, Ltd. HITACHI S-4000 For observing samples' surface topography and composition
Confocal laser scanning microscopy LSM 700; Carl Zeiss Microscopy Co., Ltd. LSM 700 For observing samples' immunofluorescence staining
Anti-Cytokeratin 19 antibody abcam ab52625 For identifying epithelium
Anti-vimentin antibody abcam ab92547 For identifying fibroblasts and activated macrophages
Anti-TE-7 antibody Millipore CBL271 For identifying fibroblasts in the dermis
Anti-CD68 antibody Sigma-Aldrich SAB2700244 For identifying macrophages
Human CD14 Antibody R&D Systems MAB3832-SP For identifying macrophages
Alexa Fluor 594-conjugated secondary goat anti-rabbit antibody Thermo Fisher Scientific A11012 For immunofluorescence staining
Alexa Fluor 488-conjugated secondary goat anti-mouse antibody Thermo Fisher Scientific A11001 For immunofluorescence staining
EVOS FL Cell Imaging System Thermo Fisher Scientific For observing the sample's immunofluorescence staining
THP-1 cells Riken BRC cell bank RCB1189 For making iGTE
PMA(Phorbol 12-myristate 13-acetate) Sigma-Aldrich P8139 For differentiatting THP-1 cells

References

  1. Cekici, A., Kantarci, A., Hasturk, H., Van Dyke, T. E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000. 64 (1), 57-80 (2014).
  2. Hasturk, H., Kantarci, A., Van Dyke, T. E. Oral Inflammatory Diseases and Systemic Inflammation: Role of the Macrophage. Frontiers in Immunology. 3, 118 (2012).
  3. Koh, T. J., DiPietro, L. A. Inflammation and wound healing: The role of the macrophage. Expert reviews in molecular medicine. 13, e23 (2011).
  4. Mescher, A. L. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration. 4 (2), 39-53 (2017).
  5. Struillou, X., Boutigny, H., Soueidan, A., Layrolle, P. Experimental Animal Models in Periodontology: A Review. The Open Dentistry Journal. 4, 37-47 (2010).
  6. Han, Y. W., et al. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells. Infection and Immunity. 68 (6), 3140-3146 (2000).
  7. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., Fusenig, N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 106 (3), 761-771 (1988).
  8. Xiao, L., Miwa, N. Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equivalents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment. Hum Cell. 30 (2), 72-87 (2017).
  9. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 26 (2), 171-176 (1980).
  10. Ara, T., Kurata, K., Hirai, K., Uchihashi, T., Uematsu, T., Imamura, Y., Furusawa, K., Kurihara, S., Wang, P. L. Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res. 44 (1), 21-27 (2009).
  11. Park, E. K., Jung, H. S., Yang, H. I., Yoo, M. C., Kim, C., Kim, K. S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 56 (1), 45-50 (2007).
  12. Sharif, O., Bolshakov, V. N., Raines, S., Newham, P., Perkins, N. D. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol. 8, 1 (2007).
  13. Shetty, S., Gokul, S. Keratinization and its disorders. Oman Med J. 27 (5), 348-357 (2012).
  14. Klinge, B., Matsson, L., Attström, R. Histopathology of initial gingivitis in humans. A pilot study. J Clin Periodontol. 10 (4), 364-369 (1983).
  15. Nagarakanti, S., Ramya, S., Babu, P., Arun, K. V., Sudarsan, S. Differential expression of E-cadherin and cytokeratin 19 and net proliferative rate of gingival keratinocytes in oral epithelium in periodontal health and disease. J Periodontol. 78 (11), 2197-2202 (2007).
  16. Goodpaster, T., Legesse-Miller, A., Hameed, M. R., Aisner, S. C., Randolph-Habecker, J., Coller, H. A. An immunohistochemical method for identifying fibroblasts in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem. 56 (4), 347-358 (2008).
  17. Langeland, K., Rodrigues, H., Dowden, W. Periodontal disease, bacteria, and pulpal histopathology. Oral Surg Oral Med Oral Pathol. 37 (2), 257-270 (1974).
  18. Holness, C. L., Simmons, D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 81 (6), 1607-1613 (1993).
  19. Mor-Vaknin, N., Punturieri, A., Sitwala, K., Markovitz, D. M. Vimentin is secreted by activated macrophages. Nat Cell Biol. 5 (1), 59-63 (2003).
  20. Xiao, L., Aoshima, H., Saitoh, Y., Miwa, N. The effect of squalane-dissolved on adipogenesis-accompanied oxidative stress and macrophage in a preadipocyte-monocyte co-culture system. Biomaterials. 31 (23), 5976-5985 (2010).
  21. Xiao, L., Aoshima, H., Saitoh, Y., Miwa, N. Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent. Free Radic Biol Med. 51 (7), 1376-1389 (2011).

Play Video

Citer Cet Article
Xiao, L., Okamura, H., Kumazawa, Y. Three-dimensional Inflammatory Human Tissue Equivalents of Gingiva. J. Vis. Exp. (134), e57157, doi:10.3791/57157 (2018).

View Video