Summary

牙龈三维炎症人体组织当量

Published: April 03, 2018
doi:

Summary

该协议的目标是建立一个炎症的人牙龈模型在体外。该组织模型共培养三种类型的人细胞, HaCaT 角质形成细胞, 牙龈成纤维细胞, THP-1 巨噬细胞, 在三维条件下。该模型可用于牙周疾病的研究, 如牙龈炎和牙周炎。

Abstract

牙周疾病 (如牙龈炎和牙周炎) 是成人牙齿丢失的主要原因。牙龈炎症是牙周疾病的基本生理病理。目前在各种类型的动物中建立了牙周疾病的实验模型。然而, 动物模型的生理病理与人类不同, 因此很难分析细胞和分子机制, 并对牙周疾病新药进行评价。在这里, 我们提出了一个详细的协议, 以重建牙龈炎症组织等值的龈 (iGTE)在体外。我们首先使用两种类型的人类细胞, 包括人牙龈成纤维细胞 (HGF) 和人表皮角质细胞 (HaCaT), 在三维条件下, 构建牙龈 (GTE) 的人体组织当量。我们创建一个伤口模型, 使用组织冲床打孔在 GTE。然后, 将人 THP-1 单核细胞与胶原凝胶混合, 注入 GTE 的孔内。通过 adimistration 10 佛波 12-酯 13-醋酸盐 (PMA) 为72小时, THP-1 细胞分化成巨细胞形成炎症灶在 GTE (iGTE) (iGTE 也可以 stumilated 与2µg/毫升脂多糖 (LPS) 48 h 启动炎症).IGTE 是第一个体外模型的炎症牙龈使用人类细胞与三维体系结构。IGTE 反映了牙周疾病的主要病理变化 (免疫 activition、fibryoblasts、上皮细胞、单核和巨噬细胞之间的细胞间相互作用)。GTE, 受伤的 GTE 和 iGTE 可作为多功能工具, 研究伤口愈合, 组织再生, 炎症, 细胞相互作用, 和屏幕潜在药物的牙周疾病。

Introduction

牙周疾病是成人牙齿丢失的主要原因。牙龈炎和牙周炎是最常见的牙周疾病。牙龈中存在生物膜介导的急性或慢性炎症变化。牙龈炎的特点是急性炎症, 而牙周炎通常呈现为慢性炎症。在组织学层面上, 细菌成分会触发免疫细胞的活化, 如巨噬细胞、淋巴细胞、血浆细胞和桅杆单元1,2。这些免疫细胞, 特别是巨细胞, 与局部细胞 (包括牙龈上皮细胞、成纤维细胞、血管内皮和成骨细胞) 相互作用, 导致牙周组织的炎症性病变3,4。实验模型的牙周疾病已建立在各种类型的动物, 如大鼠, 仓鼠, 兔, 雪貂, 犬, 和灵长类动物。然而, 动物模型的生理病理与人类不同, 因此很难分析细胞和分子机制, 并评估牙周病的新药 5.利用牙周细菌和单层人口腔上皮细胞的共同培养, 研究了牙周感染的机制6。然而, 口腔细胞的单层培养缺乏完整组织的三维 (3D) 细胞结构;因此, 它们无法模拟体外情况。

在这里, 3D 炎症人的牙龈组织等效物 (iGTE) 是用来表示牙周疾病的在体外。这种3D 模型的牙周疾病在单层细胞培养和动物模型之间占据中间位置。三种类型的人类细胞, 包括 HaCaT 角质形成细胞, 牙龈成纤维细胞, 和 THP-1 巨噬细胞, 是由胶原凝胶共同培养, 并刺激炎症启动器, 以建立 iGTE。IGTE 严密模拟了牙龈中细胞分化、细胞相互作用和巨噬细胞活化的体内条件。该模型有许多可能的应用, 药物筛选和测试新的药理方法, 牙周疾病, 以及分析细胞和分子机制的伤口愈合, 炎症, 和组织再生。

Protocol

本协议旨在创建人牙龈组织当量, 牙龈伤口模型, 牙龈炎模型。人皮肤表皮角质细胞 (HaCaT) 是亲切提供的 Fusenig 教授 e. 德意志 Krebsforschungszentrum (德国海德堡)7。根据先前发布的协议8, 人牙龈成纤维细胞 (HGFs) 与牙龈组织分离。事先获得知情同意, 并根据道德委员会制定的指导方针, 东京牙科大学生活牙科学院 (授权号码: NDU-T2012-35) 批准了这项研究。协议步骤1–3应…

Representative Results

HaCaT 细胞在相对比显微镜观察下显示典型的角质形成形态 (图 2A)。扫描电镜 (SEM) 图像表明, HaCaT 细胞表面被许多微绒毛覆盖。HaCaT 细胞之间的细胞间连接由膜过程介导 (图 2B)。HaCaT 细胞表达牙龈上皮标记 K8/1814, 表明 HaCaT 细胞适合牙龈重建 (图 2C)。 <p class="jove_content" fo:keep-together.within-…

Discussion

该协议是基于创建牙龈组织当量和皮下脂肪组织等价的方法, 以前的报告中描述的8,21,22。虽然这是一个简单而简单的方法, 但有些步骤需要特别注意。例如, 胶原混合物应保持在冰上, 直到使用, 以避免凝胶形成的解决方案。当将胶原蛋白混合物添加到区域性插入中时, 请确保将该溶液注入插入中心, 以避免形成有偏见的凝胶 (如<…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本促进科学促进会 (26861689 和 17K11813) 资助的部分支持。作者感谢纳撒尼尔. 格林先生校对。

Materials

Collagen type I-A Nitta Gelatin Inc For making dermis of GTE
MEM-alpha Thermo Fisher Scientific 11900073 Cell culture medium
Cell Culture Insert (for 24-well plate), pore size 3.0 μm Corning, Inc. 353096 For tissue culture
GlutaMAX Thermo Fisher Scientific 35050061 Cell culture reagent
DMEM Thermo Fisher Scientific 31600034 Cell culture medium
KnockOut Serum Replacement Thermo Fisher Scientific 10828028 Cell culture reagent
Tissue puncher Shibata system service co., LTD SP-703 For punching holes in GTE
RPMI 1640 Thermo Fisher Scientific 31800022 Cell culture medium
BSA Sigma-Aldrich A3294 For immunostaining
Hoechst 33342 (NucBlue Live Cell stain) Thermo Fisher Scientific R37605 For labeling nuclei
Fluorescence mount medium Dako For mounting samples after immunostaining
Anti-Cytokeratin 8+18 antibody [5D3] abcam ab17139 For identifying epithelium
Scaning electron microscope Hitachi, Ltd. HITACHI S-4000 For observing samples' surface topography and composition
Confocal laser scanning microscopy LSM 700; Carl Zeiss Microscopy Co., Ltd. LSM 700 For observing samples' immunofluorescence staining
Anti-Cytokeratin 19 antibody abcam ab52625 For identifying epithelium
Anti-vimentin antibody abcam ab92547 For identifying fibroblasts and activated macrophages
Anti-TE-7 antibody Millipore CBL271 For identifying fibroblasts in the dermis
Anti-CD68 antibody Sigma-Aldrich SAB2700244 For identifying macrophages
Human CD14 Antibody R&D Systems MAB3832-SP For identifying macrophages
Alexa Fluor 594-conjugated secondary goat anti-rabbit antibody Thermo Fisher Scientific A11012 For immunofluorescence staining
Alexa Fluor 488-conjugated secondary goat anti-mouse antibody Thermo Fisher Scientific A11001 For immunofluorescence staining
EVOS FL Cell Imaging System Thermo Fisher Scientific For observing the sample's immunofluorescence staining
THP-1 cells Riken BRC cell bank RCB1189 For making iGTE
PMA(Phorbol 12-myristate 13-acetate) Sigma-Aldrich P8139 For differentiatting THP-1 cells

References

  1. Cekici, A., Kantarci, A., Hasturk, H., Van Dyke, T. E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000. 64 (1), 57-80 (2014).
  2. Hasturk, H., Kantarci, A., Van Dyke, T. E. Oral Inflammatory Diseases and Systemic Inflammation: Role of the Macrophage. Frontiers in Immunology. 3, 118 (2012).
  3. Koh, T. J., DiPietro, L. A. Inflammation and wound healing: The role of the macrophage. Expert reviews in molecular medicine. 13, e23 (2011).
  4. Mescher, A. L. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration. 4 (2), 39-53 (2017).
  5. Struillou, X., Boutigny, H., Soueidan, A., Layrolle, P. Experimental Animal Models in Periodontology: A Review. The Open Dentistry Journal. 4, 37-47 (2010).
  6. Han, Y. W., et al. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells. Infection and Immunity. 68 (6), 3140-3146 (2000).
  7. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., Fusenig, N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 106 (3), 761-771 (1988).
  8. Xiao, L., Miwa, N. Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equivalents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment. Hum Cell. 30 (2), 72-87 (2017).
  9. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 26 (2), 171-176 (1980).
  10. Ara, T., Kurata, K., Hirai, K., Uchihashi, T., Uematsu, T., Imamura, Y., Furusawa, K., Kurihara, S., Wang, P. L. Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res. 44 (1), 21-27 (2009).
  11. Park, E. K., Jung, H. S., Yang, H. I., Yoo, M. C., Kim, C., Kim, K. S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 56 (1), 45-50 (2007).
  12. Sharif, O., Bolshakov, V. N., Raines, S., Newham, P., Perkins, N. D. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol. 8, 1 (2007).
  13. Shetty, S., Gokul, S. Keratinization and its disorders. Oman Med J. 27 (5), 348-357 (2012).
  14. Klinge, B., Matsson, L., Attström, R. Histopathology of initial gingivitis in humans. A pilot study. J Clin Periodontol. 10 (4), 364-369 (1983).
  15. Nagarakanti, S., Ramya, S., Babu, P., Arun, K. V., Sudarsan, S. Differential expression of E-cadherin and cytokeratin 19 and net proliferative rate of gingival keratinocytes in oral epithelium in periodontal health and disease. J Periodontol. 78 (11), 2197-2202 (2007).
  16. Goodpaster, T., Legesse-Miller, A., Hameed, M. R., Aisner, S. C., Randolph-Habecker, J., Coller, H. A. An immunohistochemical method for identifying fibroblasts in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem. 56 (4), 347-358 (2008).
  17. Langeland, K., Rodrigues, H., Dowden, W. Periodontal disease, bacteria, and pulpal histopathology. Oral Surg Oral Med Oral Pathol. 37 (2), 257-270 (1974).
  18. Holness, C. L., Simmons, D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 81 (6), 1607-1613 (1993).
  19. Mor-Vaknin, N., Punturieri, A., Sitwala, K., Markovitz, D. M. Vimentin is secreted by activated macrophages. Nat Cell Biol. 5 (1), 59-63 (2003).
  20. Xiao, L., Aoshima, H., Saitoh, Y., Miwa, N. The effect of squalane-dissolved on adipogenesis-accompanied oxidative stress and macrophage in a preadipocyte-monocyte co-culture system. Biomaterials. 31 (23), 5976-5985 (2010).
  21. Xiao, L., Aoshima, H., Saitoh, Y., Miwa, N. Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent. Free Radic Biol Med. 51 (7), 1376-1389 (2011).

Play Video

Citer Cet Article
Xiao, L., Okamura, H., Kumazawa, Y. Three-dimensional Inflammatory Human Tissue Equivalents of Gingiva. J. Vis. Exp. (134), e57157, doi:10.3791/57157 (2018).

View Video