Summary

从成年斑马鱼中制备新鲜视网膜切片用于体成像实验

Published: May 09, 2018
doi:

Summary

影像视网膜组织可以提供无法从传统生化方法收集的单细胞信息。该协议描述了从斑马鱼的视网膜切片的制备共焦成像。荧光基因编码的传感器或指示染料允许可视化许多生物学过程中的不同的视网膜细胞类型。

Abstract

视网膜是一种复杂的组织, 它能启动和整合第一步的视觉。视网膜细胞功能障碍是许多致盲疾病的标志, 未来的治疗取决于对不同视网膜细胞正常功能的基本理解。由于在视网膜细胞环境中, 特定细胞类型的贡献减少, 因此使用生化方法获得这种信息是困难的。由于基因编码的荧光生物传感器数量越来越多, 活体视网膜成像可以提供一个亚细胞水平上许多生物学过程的观点。然而, 这项技术迄今仅限于蝌蚪和斑马鱼幼虫、离体视网膜的最外层眼底层, 或者活动物视网膜的低分辨率成像。在这里, 我们提出了一个方法, 以产生活的前活体视网膜切片从成年斑马鱼的实况成像通过共焦显微镜。这项准备产生横向切片与所有视网膜层和大多数细胞类型可见, 以执行共聚焦成像实验, 使用灌注。转基因斑马鱼表达荧光蛋白或生物传感器在特定的视网膜细胞类型或器被用来从完整的视网膜提取单细胞信息。此外, 视网膜切片可以加载荧光指示器染料, 增加了该方法的通用性。本协议是为斑马鱼锥感光细胞内的成像 Ca2 +开发的, 但有适当的标记, 它可以用来测量在米勒电池、双极性和水平细胞、小胶质、无长突细胞或视网膜上的ca 2 + 或代谢物。神经节细胞。视网膜色素上皮从切片中移除, 因此该方法不适用于研究该细胞类型。通过实践, 可以从一种动物中生成连续切片, 进行多项实验。这种适应性技术为回答许多关于视网膜细胞生物学、Ca2 +和能量稳态的问题提供了有力的工具。

Introduction

斑马鱼 (斑马斑马) 由于其体积小、快速发育和脊椎动物器官系统, 已广泛用于医疗和基础科学研究1。斑马鱼幼虫的天然透明结合了转基因的既定方法, 使活体动物的细胞过程得到了详细的可视化。一些基因编码的荧光生物传感器已瞄准特定的斑马鱼细胞, 以检测 Ca2 + 2, 过氧化氢3, 凋亡激活4和 ATP5

在体内成像的斑马鱼幼虫导致了神经科学领域的突破性进展, 包括大脑电路6的映射和中枢神经系统疾病的药物开发7。斑马鱼非常适合视觉研究, 因为它们的视网膜具有较高脊椎动物的层流结构和神经元类型, 并且它们显示健壮的视觉行为8,9。在斑马鱼10,11中成功地模拟了几种与人类疾病类似的视网膜退化, 包括在视网膜2内的单个感光细胞的活体成像. 12

虽然体内斑马鱼幼虫成像是一个有价值的工具, 但随着鱼的生长和色素沉着的发展, 一些药理治疗不能渗透到整个动物身上, 它变得更具挑战性。此外, 某些细胞过程随着发育和年龄的变化而改变, 使以后的时间对理解功能和成人动物疾病的进展至关重要。生物化学方法, 如应用免疫印迹, 定量分析 PCR,O 2 消耗量和 metabolomic 分析可以提供有关视网膜整体生物学的重要线索, 但很难辨别个别细胞类型的贡献受疾病。影像分离的视网膜组织体绕过这些问题, 而成像扁平的视网膜提供了外部视网膜13的看法, 更深的内视网膜特征被遮蔽。横向视网膜切片, 如在固定免疫组化分析中提出的, 使所有层和细胞类型的清晰的观点, 但只提供一个单一的快照的动态过程涉及正常功能和疾病。

在这里, 我们提出了一个方法来生成体外横向视网膜切片从成年斑马鱼进行成像. 它类似于制备两栖动物和斑马鱼视网膜切片的电生理和形态学研究的方法14,15, 对时间推移成像体使用共焦的重要修改显微镜。用共聚焦显微镜实时监测生物传感器或染料在切片中的荧光反应, 同时用灌注法提供药理剂。虽然这种方法是为成像感光细胞开发的, 它可能是可行的, 以可视化的米勒电池, 双极细胞, 水平细胞, 无长突细胞, 或视网膜神经节细胞与适当的荧光标记。此外, 切片可以加载荧光细胞渗透染料报告细胞活力, 水泡运输, 线粒体功能, 或氧化还原状态。这种多才多艺的准备允许在整个视网膜上可视化多种亚细胞过程, 包括 Ca2 +动力学, 信号转导和代谢状态。

Protocol

所有动物实验都是由华盛顿大学动物保育和使用委员会批准的。 1. 准备动物和设备 注: 视网膜色素上皮 (RPE) 是一种深色的组织周围的视网膜外, 其色素沉着可以掩盖视网膜特征, 并损害组织时共聚焦成像前体。在黑暗中, 斑马鱼的视网膜色素从视网膜中缩回;深色适应的鱼, 以方便今后去除视网膜色素切片和成像。 将鱼转移到充满鱼水的产卵?…

Representative Results

切片的稳定定位和横向定位是药理学药物注射或灌注成像成功的关键。在共聚焦成像之前仔细检查和重定位切片, 以确保所有视网膜层可见 (图 2A, 切片 ii)。如果切片稍微向前旋转 (图 2A、切片 iii), 则外部段束将可见, 并且可以用镊子进行小调整, 以使所需的视网膜层成为焦点。不应将切片粘附在过滤纸上 (图 2A</s…

Discussion

体成像的新鲜斑马鱼视网膜切片已被证明是一个多才多艺的工具, 研究感光细胞生物学20,21,22, 是独一无二的, 因为它能够在一个成熟的, 充分的分析单个细胞分化视网膜。通过实践, 有可能进行多项实验的组织从一条鱼, 甚至使用序列切片从同一部分的视网膜。除了对制备用于电生理学研究的两栖类视网膜切片的挑战和?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢拉尔夫尼尔森和丹尼尔. Possin 在制定这项协议时提供了周到的指导, 伊娃 Ma、阿什利. 乔治和盖尔. 斯坦顿为新一代稳定的转基因斑马鱼线。这项工作得到了 NSF GRFP 2013158531 M.G.、NIH 内5T32EY007031 到卫生间和 M.G. 的支持, EY026020 兰伯特和迪萨纳亚克

Materials

zebrafish Univeristy of Washington South Lake Union Aquatics Facility stocks maintained in-house as stable transgenic lines
petroleum jelly Fisher Scientific 19-090-843 for petroleum jelly syringe
3-mL slip tip syringe Fisher Scientific 14-823-436 for petroleum jelly syringe
20g 3.8 cm slip tip needle Fisher Scientific 14-826-5B for petroleum jelly syringe
plain 7 cm X 2.5 cm microscope slide Fisher Scientific 12-550-A3 for eyecup dissection, slicing chamber
Seche Vite clear nail polish Amazon B00150LT40 for slicing chamber
18 mm X 18 mm #1 glass coverslips Fisher Scientific 12-542A for imaging ladders
unflavored dental wax Amazon B01K8WNL5A for imaging ladders
double edge razor blades Stoelting 51427 for tissue slicing
tissue slicer with digital micrometer Stoelting 51415 for tissue slicing
filter paper – white gridded mixed cellulose, 13 mm diameter, 0.45 µm pore size EMD Millipore HAWG01300 filter paper for mounting retinas
10 cm petri dish Fisher Scientific FB0875712 for fish euthanasia, dissection, imaging ladder assembly
15 cm plain-tipped wood applicator stick Fisher Scientific 23-400-112 for wire eye loop tool
30g (0.25 mm diameter) tungsten wire Fisher Scientific AA10408G6 for wire eye loop tool
D-glucose Sigma Aldrich G8270 component of supplement stock solution
sodium L-lactate Sigma Aldrich L7022 component of supplement stock solution
sodium pyruvate Sigma Aldrich P2256 component of supplement stock solution
L-glutamine Sigma Aldrich G3126 component of supplement stock solution
 L-glutathione, reduced Sigma Aldrich G4251 component of supplement stock solution
L-ascorbic acid Sigma Aldrich A5960 component of supplement stock solution
NaCl Sigma Aldrich S7653 component of Ringer's solution
KCl Sigma Aldrich P9333 component of Ringer's solution
CaCl2 · 2H2O Sigma Aldrich C3881 component of Ringer's solution
NaH2PO4 Sigma Aldrich S8282 component of Ringer's solution
MgCl2 · 6H2O Sigma Aldrich M0250 component of Ringer's solution
HEPES Sigma Aldrich H3375 component of Ringer's solution
Tris base Fisher Scientific BP152 component of Na+-free Ringer's solution
6 N HCl Fisher Scientific 02-003-063 component of Na+-free Ringer's solution
KH2PO4 Sigma Aldrich P5655 component of Na+-free Ringer's solution
50 mL conical centrifuge tube Denville Scientific C1062-P container for Ringer's solution
Vannas scissors – 8 cm, angled 5 mm blades World Precision Instruments 501790 micro-scissors for eyecup dissection
Swiss tweezers – #5, 11 cm, straight, 0.06 X 0.07 mm tips World Precision Instruments 504510 fine forceps for eyecup dissection and slice manipulation
single edge razor blades Fisher Scientific 12-640 for eyecup dissection and trimming filter paper
EMD Millipore filter forceps Fisher Scientific XX6200006P flat forceps for handling wet filter paper
C12 558/568 BODIPY Fisher Scientific D3835 stains live cell nuclei; incubate 5 µg/mL for 15 min at room temperature
propidium iodide (PI) Fisher Scientific P3566 stains dead cell nuclei; incubate 5 µg/mL for 20 min at room temperature
Hoechst 33342 Fisher Scientific 62249 stains live cell nuclei; incubate 5 µg/mL for 20 min at room temperature
Tetramethylrhodamine, methyl ester (TMRM) Fisher Scientific T668 stains functional, negatively-charged mitochondria; incubate 1 nM for 30 min at room temperature
tissue perfusion chamber Cell MicroControls BT-1-18/BT-1-18BV [-SY] imaging chamber for injection or perfusion
2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (NBDG) Fisher Scientific N13195 fluorescent glucose analog adminitered orally to zebrafish 30 min prior to euthanasia
Olympus laser scanning confocal microscope Olympus FV1000 confocal microscope for visualizing fluorescence of slices at single-cell resolution
Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) Sigma Aldrich C2759 experimental reagent which ablates mitochondrial respiration; treat slices to a final concentration of 1 µM
miniature aspirator positioner Cell MicroControls FL-1 for perfusion
perfusion manifold, gas bubbler manifold, flow valve, 60cc syringe holder Warner Instruments various for perfusion

References

  1. Lieschke, G., Currie, P. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8 (5), 353-367 (2007).
  2. Ma, E., et al. Loss of Pde6 reduces cell body Ca2+ transients within photoreceptors. Cell Death Dis. 4 (9), e797 (2013).
  3. Niethammer, P., Grabher, C., Look, A., Mitchison, T. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 459 (7249), 996-999 (2009).
  4. Andrews, N., et al. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time. J. Biophotonics. 9 (4), 414-424 (2016).
  5. Kioka, H., et al. Evaluation of intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a positive regulator of oxidative phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 111 (1), 273-278 (2014).
  6. Muto, A., Ohkura, M., Abe, G., Nakai, J., Kawakami, K. Real-Time Visualizationof Neuronal Activity during Perception. Curr. Biol. 23 (4), 307-311 (2013).
  7. Stewart, A., Braubach, O., Spitsbergen, J., Gerlai, R., Kalueff, A. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 37 (5), 264-278 (2014).
  8. Zou, S. -. Q., Yin, W., Zhang, M. -. J., Hu, C. -. R., Huang, Y. -. B., Hu, B. Using the optokinetic response to study visual function of zebrafish. J. Vis. Exp. (36), e1742 (2010).
  9. Neuhauss, S. Behavioral genetic approaches to visual system development and function in zebrafish. J. Neurobiol. 54 (1), 148-160 (2002).
  10. Stearns, G., Evangelista, M., Fadool, J., Brockerhoff, S. A Mutation in the Cone-Specific pde6 Gene Causes Rapid Cone Photoreceptor Degeneration in Zebrafish. J. Neurosci. 27 (50), 13866-13874 (2007).
  11. Gross, J., Perkins, B. Zebrafish mutants as models for congenital ocular disorders in humans. Mol. Reprod. Dev. 75 (3), 547-555 (2007).
  12. Lewis, A., Williams, P., Lawrence, O., Wong, R., Brockerhoff, S. Wild-Type Cone Photoreceptors Persist Despite Neighboring Mutant Cone Degeneration. J. Neurosci. 30 (1), 382-389 (2010).
  13. Wang, T. -. M., Holzhausen, L., Kramer, R. Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina. Nat. Neurosci. 17 (2), 262-268 (2014).
  14. Van Hook, M., Thoreson, W. Simultaneous Whole-cell Recordings from Photoreceptors and Second-order Neurons in an Amphibian Retinal Slice Preparation. J. Vis. Exp. (76), e50007 (2013).
  15. Connaughton, V. Zebrafish retinal slice preparation. Meth. Cell Sci. 25 (1/2), 49-58 (2003).
  16. Kennedy, B., et al. Identification of a zebrafish cone photoreceptor-specific promoter and genetic rescue of achromatopsia in the nof mutant. Invest. Ophthalmol. Vis. Sci. 48 (2), 522-529 (2007).
  17. George, A., et al. Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins in cone photoreceptor inner segments. PLoS ONE. 9 (1), e84394 (2014).
  18. Shin, J., Chen, J., Solnica-Krezel, L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 141 (19), 3807-3818 (2014).
  19. Giarmarco, M., Lindsay, K., Du, J., Cleghorn, W., Brockerhoff, S., Hurley, J. Imaging Real-time Glucose Uptake Reveals Distinct Transport Among Cell Types. Invest. Ophthalmol. Vis. Sci. , (2015).
  20. Kanow, M., et al. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. eLife. 6, (2017).
  21. Giarmarco, M., Cleghorn, W., Sloat, S., Hurley, J., Brockerhoff, S. Mitochondria Maintain Distinct Ca2+ Pools in Cone Photoreceptors. J. Neurosci. 37 (8), 2061-2072 (2017).
  22. Uckermann, O., et al. Selective staining by vital dyes of Müller glial cells in retinal wholemounts. Glia. 45 (1), 59-66 (2003).
  23. Johnson, S., Rabinovitch, P. Ex vivo imaging of excised tissue using vital dyes and confocal microscopy. Current protocols in cytometry. , (2012).
  24. Kulkarni, M., et al. Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina. J. Vis. Exp. (99), (2015).

Play Video

Citer Cet Article
Giarmarco, M. M., Cleghorn, W. M., Hurley, J. B., Brockerhoff, S. E. Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments. J. Vis. Exp. (135), e56977, doi:10.3791/56977 (2018).

View Video