Ce protocole présente un test in vitro d’imagerie live phagocytose pour mesurer la capacité phagocytaire des astrocytes. La microglie et les astrocytes purifiée de rat sont utilisées avec synaptosomes conjugué indicateur de pH. Cette méthode peut détecter la cinétique de dégradation et d’une durée de temps réel et fournit une plate-forme de dépistage approprié pour identifier les facteurs modulant la phagocytose astrocyte.
Les astrocytes sont le type de grandes cellules dans le cerveau et contacter directement les synapses et les vaisseaux sanguins. Bien que les cellules microgliales ont été considérés comme les principales cellules immunitaires et seulement les phagocytes dans le cerveau, les études récentes ont montré que les astrocytes participent également dans divers processus phagocytaires, telles que l’élimination de synapse développement et apurement des plaques de bêta-amyloïde dans la maladie d’Alzheimer (ma). Malgré ces résultats, l’efficacité d’une durée d’astrocyte et la dégradation de leurs cibles ne sont pas claires comparé à celui des cellules microgliales. Ce manque d’information est principalement en raison de l’absence d’un système de test dans lequel la cinétique de l’astrocyte et la microglie-médiée par phagocytose sont facilement comparables. Pour atteindre cet objectif, nous avons développé à long terme d’imagerie live in vitro phagocytose des tests afin d’évaluer la capacité phagocytaire des astrocytes purifiées et la microglie. Dans ce test, détection en temps réel d’enlisement et d’avilissement est possible à l’aide de synaptosomes conjugué indicateur pH, qui émettent une fluorescence rouge vif dans les organites acides, tels que les lysosomes. Notre nouveau dosage fournit la détection simple et efficace de phagocytose par le biais d’images en direct. En outre, cet essai in vitro phagocytose avec utilisable comme une plate-forme de dépistage pour identifier les produits chimiques et des composés qui peuvent renforcer ou inhiber la capacité phagocytaire des astrocytes. Comme l’ont démontré des dysfonctionnement synaptique de l’élagage et l’accumulation de protéine pathogène provoque des troubles mentaux ou maladies neurodégénératives, produits chimiques et composés qui modulent la capacité phagocytaire des cellules gliales devraient être utiles dans le traitement de diverses troubles neurologiques.
Les cellules gliales, qui font référence à des cellules non excitables dans le cerveau, sont le type de cellule majeur dans le système nerveux central (CNS). Auparavant, les cellules gliales étaient considérées comme des cellules de soutien simples qui principalement jouent un rôle passif dans le maintien de la survie neuronale et propriétés synaptiques basales. Cependant, des preuves nouvelles a révélé que les cellules gliales jouent un rôle plus actif dans divers aspects de la neurobiologie, comme le maintien de l’homéostasie du cerveau, médiation synapse formation1,2,3 et synapse élimination de4,5et moduler la plasticité synaptique6,7. Les cellules gliales dans le SNC comprennent les astrocytes, la microglie et les oligodendrocytes. Parmi ces cellules, les astrocytes et les cellules microgliales auraient dû être divulgués à jouer un rôle phagocytaire en engloutissant des synapses4,5, de cellules apoptotiques8, débris neural9et protéines pathogènes, comme la bêta-amyloïde plaques de10,11. Dans le développement du cerveau, astrocytes éliminent des synapses dans le noyau géniculé latéral (dLGN) dorsal à MERTK – et MEGF10-dependent phagocytose4. De même, la microglie également éliminer C1q-enduite synapses au cours des stades de développement par le biais de la cascade de complément classique5. Fait intéressant, il a été suggéré que des défauts d’élagage synapse peuvent être l’un des initiateurs de plusieurs troubles neurologiques. Par exemple, il a été démontré que des mutations dans le composant de complément 4 (C4), qui augmente l’élagage synapse médiée par le complément de la microglie, sont fortement associées à la prévalence de la schizophrénie chez les humains,12. Une étude récente a également montré que la voie classique de complément est hyperactivé dans les étapes de l’initiation de AD et induit la perte précoce de synapse dans cette maladie13.
Par rapport à la phagocytose médiée par les cellules microgliales, si phagocytose médiée par les astrocytes contribue à l’initiation et la progression de divers troubles neurologiques est moins claire. Cependant, une étude récente suggère que les facteurs qui modifient le taux d’élagage de la synapse normale par les astrocytes peuvent perturber l’homéostasie du cerveau et contribuer à AD susceptibilité et pathologie14. Le taux d’élagage de la synapse par les astrocytes est fortement contrôlé par isomères de l’ApoE , possédant un allèle protecteur pour AD (ApoE2) fortement améliorer la vitesse et un allèle risque d’Alzheimer (ApoE4) abaisser significativement le taux. En outre, des souris transgéniques exprimant le gène ApoE4 accumulent beaucoup plus C1q synaptique que contrôle ou ApoE2 souris14. Ces données suggèrent qui réduisaient la phagocytose médiée par les astrocytes au début du cerveau peut provoquer l’accumulation de débris sénescentes C1q-enduite synapses/synaptique qui active la phagocytose médiée par le complément des microglies, dégénérescence synaptique au volant . La capacité phagocytaire altération des astrocytes chez les porteurs du gène ApoE4 peut aussi contribuer à l’accumulation incontrôlée des plaques bêta-amyloïdes dans le cerveau touchées par AD.
En outre, il a été démontré que les cellules gliales du cerveau âgé de Drosophila perdent leur capacité phagocytaire due à une diminution traduction de Draper, un homologue de Megf10 qui utilisent des astrocytes pour phagocytants des synapses. Rétablissement des taux de Draper a sauvé la capacité phagocytaire des cellules gliales, qui a éliminé efficacement les débris axonale endommagées du cerveau âgé dans une mesure similaire que celle du cerveau jeune, indiquant que vieillissement induit par des altérations dans la capacité phagocytaire des les astrocytes peuvent contribuer à la perturbation de l’homéostasie du cerveau15.
Selon ces nouveaux résultats, modulant la capacité phagocytaire des astrocytes peut être une stratégie thérapeutique séduisante pour prévenir et traiter divers troubles neurologiques. À cet égard, plusieurs tentatives d’améliorer la capacité phagocytaire des astrocytes, par exemple, en induisant une acidification des lysosomes avec nanoparticules acides16 et surexprimant le facteur de transcription EB (TFEB), qui peut améliorer ont été lysosome biogenèse17. Malgré ces tentatives, on ignore encore comment les astrocytes et les cellules microgliales diffèrent dans leur cinétique phagocytaire et savoir si nous devrions augmenter ou diminuer leurs capacités phagocytaires dans diverses maladies.
Dans cet article, nous présentons un roman in vitro test pour détecter la capacité phagocytaire des astrocytes en temps réel. Les données montrent différentes cinétiques de dégradation et d’une durée dans les astrocytes et les cellules microgliales. Conditionné par l’astrocyte moyen (ACM), qui contient des facteurs sécrétés d’astrocytes, est essentiel pour phagocytose efficace d’astrocytes et de cellules microgliales. En outre, Megf10, un récepteur phagocytaire dans les astrocytes et un homologue de DEC-1 et Draper, joue un rôle crucial dans la phagocytose médiée par les astrocytes8,18.
Dans cet article, nous présentons des méthodes pour une longue durée d’imagerie live in vitro phagocytose analyse en utilisant des cellules gliales purifiées et synaptosomes conjugué indicateur de pH. Nous montrons que par rapport à la microglie, astrocytes possèdent la capacité de dégradation et d’une durée différente lors de la phagocytose des synaptosomes. En outre, nos résultats suggèrent que les facteurs astrocyte-sécrétée, qui contiennent des molécules ponts comme GAS6, des protéines …
The authors have nothing to disclose.
Les auteurs remercient Jung Joo-Yeon pour sa prise en charge expérimentale au cours de la purification de synaptosomes et Jungjoo Park pour les images de synaptosomes bénéficiant d’une orientation du PS. En outre, nous remercions tous les membres en laboratoire de Chung pour discussion utile. Ce travail a été soutenu par la Fondation nationale de la recherche de subvention de Corée (NRF) financée par le gouvernement coréen (MSIP) (FRO-2016M3C7A1905391 et 2016R1C1B3006969-NRF) (W.-S. C).
Synaptosome purification | |||
Percoll | GE healthcare life sciences | 17-0891-01 | |
Quick Start Bradford Protein Assay Kit 2 | BIO-RAD | 5000202 | |
pH indicator conjugation | |||
Dimethyl sulfoxide(DMSO) | LPS solution | DMSO100 | |
pHrodo red, succinimidyl ester | Molecula probes | P36600 | |
Immunopanning | |||
10X Earle’s balanced salt solution (EBSS) | Sigma | E7510 | |
Bovine serum albumin | Bovogen | BSA025 | |
Deoxyrebonuclease 1 (DNase) | Worthington | Is002007 | |
(DMEM) | Gibco | 11960-044 | |
(dPBS) | Welgene | LB001-02 | |
Fetal bovine serum (FBS) | Gibco | 16000-044 | |
Griffonia Simplicifolia Lectin(BSL-1) | Vector Labs | L-1100 | |
Goat anti-mouse IgG+IgM(H+L) | Jackson ImmunoResearch | 115-005-044 | |
Goat anti-mouse IgM (μ-chain) | Jackson ImmunoResearch | 115-005-020 | |
Heparin-binding epidermal growth factor | Sigma | E4643 | |
Human HepaCAM antibody | R&D systems | MAB4108 | |
Integrin beta 5 monoclonal antibody (KN52) | eBioscience | 14-0497-82 | |
L-cysteine | Sigma | C7880 | |
L-glutamate | Gibco | 25030-081 | |
N-acetly-L-cyteine (NAC) | Sigma | A8199 | |
Neurobasal media | Gibco | 21103-049 | |
O4 hybridoma supernatant(mouse IgM) | Bansal et al.23 | ||
Papain | Worthington | Is003126 | |
Penicillin/streptomycin | Gibco | 15140-122 | |
Pluristrainer 20 μm | PluriSelect | 43-50020-03 | |
Poly-D-lysine | Sigma | P6407 | |
Progesterone | Sigma | P8783 | |
Putrescine dihydrochloride | Sigma | P5780 | |
Purified rat anti-mouse CD45 | BD Pharmingen | 550539 | |
Purified mouse anti-rat CD45 | BD Pharmingen | 554875 | |
Sodium pyruvate | Gibco | 11360-070 | |
Sodium selenite | Sigma | S5261 | |
Transferrin | Sigma | T1147 | |
Trypsin | Sigma | T9935 | |
Trypsin inhibitor | Worthington | LS003086 | |
Ultra-clear tube (Tube, Thinwall, Ultra-Clear) | Beckman Coulter | 344059 | |
Collect IP-ACM | |||
Macrosep Advance Centrifugal Devices with Omega Membrane (10k) | PALL | MAP010C37 | |
Macrosep Advance Centrifugal Devices with Omega Membrane (30k) | PALL | MAP030C37 | |
Phagocytosis live imaging assay | |||
Juli stage | NanoEntek | ||
Time Series Analyzer V3 plugins | https://imagej.nih.gov/ij/plugins/time-series.html |