この尿細管スカッシュ手法の目的は、急速に細胞の完全性を維持しながらマウス精母細胞の開発の細胞機能を評価するためです。このメソッドにより、精子形成のすべての段階の調査のため、マウスの減数分裂の研究のため他の生化学的な分子の生物学的アプローチと一緒に簡単に実装することができます。
雄の減数分裂の進行は、規制の厳しい携帯電話イベント数の協調的な行動を必要とするプロセスです。減数分裂の間に発生したエラーは不妊、妊娠の損失または遺伝的欠陥につながることができます。思春期と成人期にわたって継続の発症時、精母細胞の連続準同期波まで精子を受ける、最終的に半数体精子を形成します。マウスの精母細胞の減数分裂の開始を受けての最初の波は産後 10 日目 (10 dpp) で表示され、35 dpp で成熟した精子と精細管の内腔に放出されます。したがって、関心の高濃縮の人口を得るためにこの発達の時間ウィンドウ内でマウスを利用するため有利です。珍しいセル段階の分析は、細管内細胞集団の多様性を高める連続の精波の貢献のための古いマウスのより困難です。ここで説明する方法は、マウス精原細胞、精母細胞、細胞などの精細管内で見つかった細胞の細胞学的評価のため簡単に実装されている手法です。尿細管スカッシュ技術分離の雄性生殖細胞の整合性を維持でき、他の手法とは表現しにくいセル構造の検討。この尿細管スカッシュ手法の応用可能性を示すためには、紡錘アセンブリは精母細胞転移中期に前期を進める (G2/MI 転移) で監視されました。さらに、染色体花束形成、減数分裂の性染色体の不活性化 (MSCI)、中心体の複製は、この尿細管スカッシュ メソッドを使用して観察することができます細胞構造の例として評価されました。突然変異または外因性の摂動によって引き起こされる精子の中に特定の欠陥を特定するこの手法を使用でき、精子形成の分子理解に貢献。
減数分裂は、細胞分裂の 2 つの連続したラウンドを DNA 複製の 1 つのラウンドの後、複雑な携帯電話イベントです。正確な染色体分離を確保するための減数分裂の初期の段階で減数分裂固有のいくつかのイベントを調整しなければなりません。これらのイベントは、相同組み換え、姉妹の共同向きの完了を含んで第一減数分裂と同族体の chiasmata を解決するコヒーシン複合体の段階的な損失の間に体。これらのプロセスの精密な規則は、豊饒を維持するために、発達障害の遺伝的および自然流産1をもたらす染色体紡錘イベントを防ぐために必要です。
減数分裂のキー イベントが行われる男性と女性の両方で、重要な時間および作用機構の違い精子と卵形成2間存在します。たとえば、減数分裂女性、前期私は萌芽期の開発中に発生した、思春期まで dictyate 段階で逮捕。対照的に、精子形成は思春期で逮捕なしの大人の生活の中での波の進行開始します。男性と女性の減数分裂の違いが具体的に精母細胞や卵母細胞でこれらのプロセスを評価するに向かって仕出し料理方法を開発する必要性を強調しています。現在、主として減数分裂の進行を評価するクロマチン スプレッド3,4、5の使用に依存します。クロマチン スプレッドは減数分裂期の染色体を調べる場合に役立ちますが、彼らは紡錘体微小管、中心、核膜、テロメアの添付ファイルなどの細胞構造の評価を防止する、細胞の完全性を維持するために失敗します。ライブ イメージングと長期培養技術が大きく進歩した女性減数分裂; の私達の理解ただし、そのままセル全体を視覚化する同様のアプローチについては、精子6、7の研究のため実装頻度。男性減数分裂中の動的イベントを視覚化するために急速にマウス精母細胞8,9の開発の細胞の機能を評価するために確立された尿細管スカッシュ技術を適応しています。ここで説明する方法は、精子形成サイクルのさまざまな段階で複数の細胞構造の研究を有効にするセルの整合性を維持します。
この尿細管スカッシュ技術は、蛍光顕微鏡による細胞構造の評価を可能にするセル全体アプローチです。ヘマトキシリン ・ エオシン染色パラフィン埋め込まれた精巣の凍結切片の免疫蛍光ラベリングなど男性マウスの減数分裂の進行を視覚化する一般的な組織学的アプローチは、減数分裂の進行の広範な概要。ただし、これらのテクニックは、単一細胞を減数分裂10,11全体で発生するイベントの詳細な分析に必要な範囲に解決する失敗します。減数分裂のプロセスを視覚化するための代替技術は、特定し、核物質の3,4,5を解決する状態の中断を重要な chemiosmotic に依存します。これらの化学治療は、一次精母細胞以外の細胞型の観測を妨げます。最近説明滑川による分離精母細胞の核の構造を維持する研究コミュニティが有効になって、cytospin およびいくつかの研究所の4にすぐに利用できない場合があります付属品の使用が必要です。対照的に、尿細管スカッシュ テクニックだけはほとんどの細胞生物学研究所で一般的に標準的な装置が必要です。
圏内には精細管、セルトリ細胞、精原細胞、第一次および二次精母細胞など多様な細胞型を表示するは、ここで説明した尿細管スカッシュ メソッドを使用できます。若年マウス精子形成の近く同期の最初の波でこの手法を結合することにより減数分裂12を操作するときに、精子細胞の豊かな人口を得ることが可能です。このプロセスは、精子形成、初期前期イベントなどを通してプロセスの詳細な分析、G2/MI と後期遷移、および精子形成に中期に許可されます。さらに、尿細管スカッシュ準備は染色体 (interchromatid ドメイン (Icd) や体) と (由来と一分素材/行列) 中心の細胞像を可視化する使用できます。スカッシュ メソッドは、クロマチン スプレッドと蛋白質の抽出など、他の実験的アプローチと並行で容易に実行できます。さらに、この手法は、直接可視化13スライドに精子細胞を入金する正常に変更されています。
ここで説明したメソッドには、野生型 c57bl/6 j マウスにおける G2/MI 転移を分析するセル全体精細管スカッシュ テクニックが含まれます。第一減数分裂に入る一次精母細胞の細胞学的特徴は、減数分裂のスピンドルを観察する蛍光顕微鏡で視覚化しました。この汎用性の高い手法は、他の減数分裂の段階と異なる種類の細胞を可視化する簡単に変更できます。技術はまた、DNA と RNA の魚のアプローチなど、代替の可視化戦略に従うです。
マウス精子形成時の減数分裂の進行を支配する細胞の活動を研究するための有用なモデル生物であると証明します。さらに、それはツールが終了するので、多くのイベントなど減数分裂前期から私の精子形成過程の研究に仕出し料理を開発する必要がある、性的に二形であります。このプロトコルでは、精細管スカッシュ法可視化とマウス精子形成サイクルのさまざまな段階の研究について?…
The authors have nothing to disclose.
この作品は、日の出 (R01GM11755) に P.W.J.、S.R.W.、j. h. 訓練助成フェローシップ国立がん研究所 (NIH) (CA009110) からサポートされていた
16% Paraformaldehyde Aqueous | Electron Microscopy Sciences (EMS) | 15710 | |
10x PBS | Quality Biological | 119-069-161 | |
Triton X-100 | Sigma | T8787 | |
BSA | Sigma | A1470 | |
Horse Serum | Sigma | H-1270 | |
35mm x 10mm Petri Dish, Sterile, non-treated | CellTreat | P886-229638 | |
Poly-L-lysine coated glass slides | Sigma | P0425-72EA | |
Liquid Blocker Pen | Electron Microscopy Sciences (EMS) | 71310 | |
Humid Box | Evergreen | 240-9020-Z10 | |
Wheaton Coplin Glass Staining Dish for 5 or 10 Slides | Fisher | 08-813E | |
VECTASHIELD Antifade Mounting Medium with DAPI | Vector Labs | H-1200 | |
Microscope Cover Slides (22mmx60mm) | Fisher | 12-544-G | |
Clear Nail Polish | Amazon | N/A | |
Microsopes | |||
Name | Company | Catalog Number | Comments |
SteREO Discovery.V8 | Zeiss | 495015-0001-000 | |
Observer Z1 | Zeiss | 4109431007994000 | |
Zeiss ZEN 2012 blue edition image software | Zeiss | ||
ORCA-Flash 4.0 CMOS camera | Hamamatsu | ||
Primary Antibodies | |||
Name | Company | Catalog Number | Comments |
Mouse anti-SYCP3 | Santa Cruz | sc-74569 | 1 in 50 |
Rabbit anti-SYCP3 | Fisher (Novus) | NB300-231 | 1 in 1000 |
Goat anti-SCP3 | Santa Cruz | sc-20845 | 1 in 50 |
Human anti-Centromere Protein | Antibodies Incorporated | 15-235 | 1 in 100 |
Mouse anti-alpha tubulin | Sigma | T9026 | 1 in 1000 |
Mouse anti-AIM1 | BD Biosciences | 611082 | 1 in 200 |
Mouse anti-γH2AX | Thermo Fisher | MA1-2022 | 1 in 500 |
Mouse anti-CENT3 | Abnova | H00001070-M01 | 1 in 200 |
Rabbit anti-pericentrin | Abcam | ab4448 | 1 in 200 |
Rabbit anti-REC8 | Courtesy of Dr. Karen Schindler | N/A | 1 in 1000 |