Summary

封闭系统中脑切片长期培养中精确定位和重复间歇成像的改进辊筒法

Published: December 28, 2017
doi:

Summary

本文介绍了一种改进的滚子管法培养和间歇高分辨率成像啮齿动物脑切片多周, 精确重新定位光刻片。神经元的生存能力和切片形态学保持良好。提供了这种完全封闭的系统使用病毒的细胞类型的特定表达的应用。

Abstract

培养的啮齿动物脑切片有助于研究神经元和胶质细胞在维持许多正常的体内相互作用的环境中的分子行为。从各种转基因小鼠线获得的切片或使用病毒载体表达荧光标记蛋白质或记者在野生型脑切片允许高分辨率成像荧光显微镜。虽然有几种方法已经开发成像脑切片, 结合切片培养的能力, 以执行重复高分辨率成像的特定细胞在活片长期的时间已经提出了问题。当病毒载体被用于外源蛋白的表达时尤其如此, 因为这是最好的在一个封闭的系统, 以保护用户和防止交叉污染。简单的修改对辊筒管脑切片培养方法, 允许重复高分辨率成像的切片在一个封闭的系统多周。在光刻片上培养切片允许使用基准标记快速准确地将舞台重新定位到不同处理前后的同一域中。例示为使用此方法结合特定的神经元染色和表达观察海马切片结构的变化, 荧光蛋白的病毒介导的神经元表达, 以及 cofilin 病理的发展,这是先前观察到的阿尔茨海默氏病 (AD) 的海马反应的切片治疗与低聚体淀粉样β (a) 肽。

Introduction

从啮齿动物脑区分离神经元的原代培养是研究人员用来观察病理性牵连刺激反应的重要工具。然而, 这种研究的缺点是只在2D 和没有他们的神经胶质支持系统的情况下观察神经元。此外, 除非在非常高密度的条件下生长 (640 神经元/mm2或大约16% 的表面积), 在这种情况下, 它不可能跟随树枝状或轴突的随机突起, 而从其细胞体, 海马4周以上的神经元存活能力明显下降1, 限制了游离培养对年龄相关病症的扩展研究。从啮齿动物大脑中制备的切片是一种有吸引力的选择, 它通过维持一个有组织的细胞结构和存活数周或数月来克服这些限制。在切片培养中维持啮齿动物大脑许多不同区域的条件已被描述为2

两种主要的方法被广泛应用于脑切片的长期培养: 在气界面的膜上培养3或在密封管上培养片, 允许在滚筒孵化器中旋转以提供曝气的4。在膜上培养的切片可以直接成像高分辨率荧光显微镜使用直立显微镜和水浸泡目标5。另外, 在膜上培养的切片也被转移到玻璃底盘, 用倒置显微镜6实现树突棘的良好分辨率。然而, 两种在膜上生长的成像切片方法都是开放系统, 需要进行中等程度的改变, 并且经常使用抗真菌和/或抗生素来防止或减少污染5,6。膜上的切片在 air-medium 界面保持优良的形态学和生存, 但返回到精确的位置在重复成像在高放大率是非常困难的, 除非实验只遵循小小组的细胞表示荧光标记。虽然在膜上生长的切片已使用与病毒介导的表达转基因5,6, 生物安全协议可能需要使用封闭的文化系统, 用于某些病毒载体表达荧光标记的蛋白质和细胞生理学记者。此外, 沉浸目标要求在培养5中遵循的样本之间进行净化。膜界面培养的一个主要应用是结合高分辨率成像与电生理学在单时间点7

在塑料管内片的滚子管法不允许任何电生理学或高分辨率成像, 不排除片。因此, 这种方法最常被应用到长期研究中, post-fixation 观测已经被做为8。这里描述的是一种利用辊筒培养技术的方法, 但对片上的 drilled-out 管, 只要保持文化, 就可以反复成像。封闭的系统不需要介质变化的成像和利用光刻片提供的基准标记, 允许成像在高放大率, 几天或几周后, 精确的领域以前成像。

我们应用这种方法来检查啮齿动物海马的变化, 这是一个主要的大脑区域, 涉及记忆和学习。啮齿类动物的海马体通常被研究为在认知障碍发展过程中观察到的病理或年龄相关变化的模型9, 如 AD 中发生的那些。我们的方法特别适合于研究随着环境变化而在单个切片内发展的病理变化, 如 a 肽的增加, 这是 AD8的特征。一个病理与人类和啮齿动物 AD 脑是存在的 cofilin 肌动蛋白聚合体和棒, 后者含有束的花丝, 其中 cofilin 和肌动蛋白是在1:1 摩尔比10,11,12. 在 a 治疗后的大鼠海马固定切片上观察到了棒状体, 以及在表达 cofilin-GFP 受缺氧8的活鼠脑切片内, 它们可能会导致 AD 中出现的突触功能障碍。和中风。在这里, 我们用这种新的培养方法观察不同病毒引入的外源嵌合荧光蛋白切片中的时间过程和分布。然后利用 cofilin 记者构造的神经元特异性表达, 跟踪 cofilin 棒和海马切片的聚集病理, 以应对可溶性 a 寡聚体 (ao) 的治疗。

Protocol

动物使用遵循批准的育种和动物使用协议, 符合动物保育和使用的准则, 科罗拉多州立大学。 注: 下面的协议描述了长期孵化和间歇性海马切片成像的制备和培养方法。一个单一的海马切片是连接到一个专门准备光刻片使用等离子凝块, 然后片被密封在平坦的一侧的 drilled-out 辊管, 这是保持在滚筒孵化器。血浆凝块在病毒感染前以溶溶解, 用于荧光蛋白表达和高分辨率成像。一?…

Representative Results

为了确定如何准确地使用基准标记来重新同一字段中的同一单元格, 我们检查了在光刻片 (图 6A) 上生长的切片。神经元被染色与一个重要染料 (100 nM 为2小时; 不染色神经细胞细胞), 它从神经元随着时间的推移而消失, 而不损害细胞25。我们在一个格子正方形中确定了一个基准标记 (图 6a, B</stro…

Discussion

这里描述的滚子管法允许长期培养和高分辨率活体影像切片脑组织。切片技术所应用的一个主要问题是切片的安装和维护。片涂层, 支持切片粘附, 促进切片细化, 通过提高突起的生长和细胞迁移的切片;因此, 我们避免使用这些基板。通过 3-aminopropyltriethoxysilane 的治疗, 将氨基基团插入玻璃上, 提高了切片的粘附性, 但在片上太少或太多的鸡血浆也会导致粘附问题导致切片损失。适当的粘附所需的血?…

Materials

Bottoms from 15 cm culture dishes VWR Scientific 25384-326
Phillips Head Machine Screws (#10-32) Ace Hardware 2.5" long and 3/16" in diameter
Flat Washers #10 ACE Hardware
Machine Screw Nuts (#10-32) ACE Hardware
Rubber Grommets  ACE Hardware 5/16", thick; 5/8", hole diameter; 1.125", OD
Polyethylene tubing (5/16"; OD, 3/16"; ID) ACE Hardware Cut to 1.8" length
Lock Washer #10 ACE Hardware
Drill Press, 5 speed  Ace Hardware ProTech Model 1201
Nunclon Delta Flat-Sided Tubes VWR 62407-076
Drill bits, 3 mm, 6 mm and 15 mm  Ace Hardware Diablo freud brand Drill bits for cutting plastic.
Drill bits for wood, 1.5 cm and 1 mm Ace Hardware
Wood file, 1/4" round Ace Harware
Spring clips, 16 mm snap holder Ace Hardware
Swivel Head Deburring Tool, 5" Ace Hardware 26307
Adhesive Silicone Sheet (Secure Seal) Grace Bio-Labs 666581 0.5 mm Thickness
6 mm hole punch Office Max
12 mm hole punch thepunchbunch.com
70% Ethanol
Phototeched Coverslips, 12 mm diameter Bellco Glass, Inc. 1916-91012
Bunsen Burner
Absolute Ethanol
Nanopure Water
3-aminopropyltriethoxylane Sigma-Aldrich A3648
Acetone Sigma-Aldrich 179124
#5 Dumont Forceps Fine Science Tools 11251-30
McIlwain Tissue Chopper Ted Pella, Inc. 10180
Double Edge Razor Blades Ted Pella, Inc. 121-6
Whatman Filter Paper VWR 28450-182 Cut into 5.8 cm diameter circles
Poly-chloro-trifluoro-ethylene (Aclar) Ted Pella, Inc. 10501-10 Cut into 5.8 cm diameter circles
#21 Surgical Blade VWR Scientific 25860-144
#5 Dumont Forceps Fine Science Tools 11251-30
Spatula, stainless with tapered end VWR 82027-518
Gey's Balanced Salt Solution Sigma-Aldrich G9779 
 Glucose ThermoFisher Scientific 15023-021 25% (w/v) Solution, 0.2 mm filter sterilized
Chicken Plasma Cocalico Biologicals 30-0300-5L Rehydrate in sterile water, centrifuge at 2500 x g 30 min at 4 °C, quick freeze aliquots in liquid nitrogen and store at  -80 °C.
Thrombin, Bovine Fisher 60-516-01KU 150 units /ml in GBSS/Glucose, quick freeze aliquots in liquid nitrogen and store at -80 °C.
Cell Roller System Bellco Biotech SciERA
Roller Incubator Forma Model 3956
N21-MAX ThermoFisher Scientific AR008
Pen/Strep (100X) ThermoFisher Scientific 15140122
200 mM Glutamine ThermoFisher Scientific 25030081
Glucose ThermoFisher Scientific 15023-021 25% (w/v) Solution, 0.2 mm filter sterilized
Neurobasal A ThermoFisher Scientific 10888-022  Complete Medium: 48 mL Neurobasal A, 1 mL N21-MAX, 0.625 mL 200 mM Glutamine, 0.180 mL 25% Glucose, 0.250 mL 100x pen/strep.
Third generation lentivirus packaging Life Technologies K4975-00
159 K cutoff centrifugal filters (Centricon) EMD Millipore
Lentiviral cloning system (InFusion) Clonetech
Plasmids 30323, 50856, 51279 Addgene
Neuronal cell viability dye (NeuO) Stemcell technologies 1801 Thaw once and quick freeze in 4 µL aliquots. Store at -20 °C
Inverted microscope Olympus IX83
Microscope objectives Olympus air: 4X, 20; oil: 40X, 60X,
Spinning disc confocal system Yokagawa CSU22
Microscope EMCCD camera Photometrics Cascade II
Linear encoded (x,y), piezo z flat top stage ASI
Microscope lasers and integration Intelligent Imaging Innovations
HEK293T cells American Type Culture Collection CRL-3216
Human Plasmin Sigma Aldrich P1867 0.002 U/mL in 0.1% bovine serum albumin (0.2 mm filter sterilized), quick freeze in liquid nitrogen and store at -80 °C.

References

  1. Brewer, G. J., Torricelli, J. R., Evage, E. K., Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res. 35 (5), 567-576 (1993).
  2. Humpel, C. Organotypic brain slice cultures: a review. Neurosciences. 305, 86-98 (2015).
  3. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 37 (2), 173-182 (1991).
  4. Gähwiler, B. H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 4 (4), 329-342 (1981).
  5. Gogolla, N., Galimberti, I., DePaola, V., Caroni, P. Long-term imaging of neuronal circuits in organotypic hippocampal slice cultures. Nat Protoc. 1 (3), 1223-1226 (2006).
  6. Roo, M. D., Ribic, A. Analyzing structural plasticity of dendritic spines in organotypic slice culture. Methods Mol Biol. 1538, 277-289 (2017).
  7. Lee, K. F. H., Soares, C., Thivierge, J. -. P., Béīque, J. -. C. Correlated synaptic inputs drive dendritic calcium amplification and cooperative plasticity during clustered synapse development. Neuron. 89 (4), 784-799 (2016).
  8. Davis, R. C., Maloney, M. T., Minamide, L. S., Flynn, K. C., Stonebraker, M. A., Bamburg, J. R. Mapping cofilin-actin rods in stressed hippocampal slices and the role of cdc42 in amyloid-beta-induced rods. J Alzheimers Dis. 18 (1), 35-50 (2009).
  9. Clark, R. E., Squire, L. R. Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc Natl Acad Sci U S A. 110, 10365-10370 (2013).
  10. Minamide, L. S., Striegl, A. M., Boyle, J. A., Meberg, P. J., Bamburg, J. R. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nature Cell Biol. 2 (9), 628-636 (2000).
  11. Rahman, T., et al. Cofilin rods and aggregates concur with tau pathology and the development of Alzheimer’s disease. J Alzheimers Dis. 42 (4), 1443-1460 (2014).
  12. Bamburg, J. R., Bernstein, B. W. Actin dynamics and cofilin-actin rods in Alzheimer disease. Cytoskeleton(Hoboken). 73 (9), 477-497 (2016).
  13. He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., Vogelstein, B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 95 (5), 2509-2514 (1998).
  14. Minamide, L. S., et al. Production and use of replication-deficient adenovirus for transgene expression in neurons. Methods Cell Biol. 71, 387-416 (2003).
  15. Kügler, S., Kilic, E., Bähr, M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 10 (4), 337-347 (2003).
  16. Mi, J., et al. A genetically encoded reporter for real-time imaging of cofilin-actin rods in living neurons. PLOS ONE. 8 (12), 83609 (2013).
  17. Wang, L., Blouin, V., Brument, N., Bello-Roufal, M., Francois, A. Production and purification of recombinant adeno-associated vectors. Methods Mol Biol. 807, 361-404 (2011).
  18. Matsushita, T., et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Therapy. 5 (7), 938-945 (1998).
  19. Ward, P., Walsh, C. E. Targeted integration of rAAV vector into the AAVS1 region. Virology. 433 (2), 356-366 (2012).
  20. Akerboom, J., et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 32 (40), 13819-13840 (2012).
  21. Kim, J. H., et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLOS ONE. 6 (4), 18556 (2011).
  22. Benskey, M. J., Manfredsson, F. P. Lentivirus production and purification. Methods Mol Biol. 1382, 107-114 (2016).
  23. Huang, L., Chen, C. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells. AIDS Res Ther. 7, 27 (2010).
  24. Bordat, A., Houvenaghel, M. C., German-Retana, S. Gibson assembly: an easy way to clone polyviral full-length infectious cDNA clones expressing an ectopic VPg. Virol J. 12, 89 (2015).
  25. Er, J. C., et al. NeuO: a fluorescent chemical probe for live neuron labeling. Angew Chem Int Ed Engl. 54 (8), 2242-2246 (2015).
  26. Bernstein, B. W., Chen, H., Boyle, J. A., Bamburg, J. R. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am J Physiol Cell Physiol. 291 (5), 828-839 (2006).
  27. Cichon, J., et al. Cofilin aggregation blocks intracellular trafficking and induces synaptic loss in hippocampal neurons. J Biol Chem. 287 (6), 3929-3939 (2012).
  28. Stine, W. B., Dahlgren, K. N., Krafft, G. A., LaDu, M. J. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem. 278 (13), 11612-11622 (2003).
  29. Maloney, M. T., Minamide, L. S., Kinley, A. W., Boyle, J. A., Bamburg, J. R. Beta-secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid beta: a feedforward mechanisms for Alzheimer’s disease. J Neurosci. 25 (49), 11313-11321 (2005).
  30. Davis, R. C., et al. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin phosphorylation. Mol Neurodegener. 6, 10 (2011).
  31. Walsh, K. P., et al. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLOS ONE. 9 (4), 95995 (2014).
  32. Woo, J. A., et al. RanBP9 at the intersection between cofilin and Aβ pathologies: rescue of neurodegenerative changes by RanBP9 reduction. Cell Death Disease. , 6 (2015).
  33. Shaw, A. E., Bamburg, J. R. Peptide regulation of cofilin activity in the CNS: a novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther. 175, 17-27 (2017).

Play Video

Citer Cet Article
Fixman, B. B., Babcock, I. W., Minamide, L. S., Shaw, A. E., Oliveira da Silva, M. I., Runyan, A. M., Maloney, M. T., Field, J. J., Bamburg, J. R. Modified Roller Tube Method for Precisely Localized and Repetitive Intermittent Imaging During Long-term Culture of Brain Slices in an Enclosed System. J. Vis. Exp. (130), e56436, doi:10.3791/56436 (2017).

View Video