Summary

阳极氧化铝在硫酸和草酸电解质中的同时多表面 Anodizations 和阶梯式反向偏置剥离

Published: October 05, 2017
doi:

Summary

提出了一种通过同时 multi-surfaces 阳极氧化制备多孔阳极氧化铝的协议, 并给出了阶梯式反向偏置分遣队。它可以反复应用于相同的铝基板, 表现出轻便、高产、环保的战略。

Abstract

在报告了 two-step 阳极氧化后, 纳米多孔阳极氧化铝 (AAOs) 在基础科学和工业应用领域得到广泛的利用, 因为它们的纳米周期排列相对较高纵横比。然而, 迄今为止所报告的技术, 这可能只适用于单表面阳极氧化, 显示严重的缺点,, 耗时, 以及复杂的程序, 需要有毒化学品, 浪费宝贵的自然资源.本文介绍了一种简便、高效、环保的制备硫酸和草酸电解质纳米 AAOs 的方法, 克服了传统的氧化铝制备方法的局限性。首先, 通过同时 multi-surfaces 阳极氧化 (SMSA) 同时产生复数 AAOs, 表明 AAOs 具有可比性质的质量性。其次, 这些 AAOs 可以与铝 (铝) 基板分离, 在相同的电解质中应用楼梯样的反向偏置 (srb), 这意味着简单和绿色技术特性。最后, 将 SMSAs 连续组合与 SRBs-based 剥离的单元序列重复应用于同一 Al 衬底, 从而强化了该策略的优点, 同时保证了自然资源的有效利用。

Introduction

在酸性电解质中由阳极氧化 Al 基体形成的 AAOs, 引起了对各种基础科学和工业的极大兴趣, 例如, 纳米管/纳米线的硬模板1,2,3,4,5, 能量存储设备6,7,8,9, 生物传感10,11, 过滤应用程序12,13,14, 用于蒸发和/或蚀刻的掩码15,16,17, 和电容式湿度传感器18,19,20,21 ,22, 由于其 self-ordered 蜂窝结构, 高宽比纳米, 和优异的机械性能23。为了将纳米多孔 AAOs 应用于这些不同的应用, 它们应该是具有高度和长程有序排列的纳米的独立形式。在这方面, 获得 AAOs 的战略必须考虑形成 (阳极氧化) 和分离 (剥离) 程序。

从阳极氧化铝的形成角度来看, 轻度阳极氧化 (以下简称 MA) 是在硫酸、草酸和磷酸电解质下很好地建立的23,24,25,26 ,27。然而, ma 过程展示了 low-yields 氧化铝制造由于他们的缓慢的成长率取决于相对地低强度的阳极电压, 将进一步恶化通过 two-step ma 过程改进纳米的周期性28 ,29。因此, 采用更高的阳极电压 (草酸/硫酸电解质) 或使用更浓的电解质 (磷酸)30,31, 将硬阳极化 (HA) 技术作为替代 MA 的方法. 32,33,34,3536373839HA 进程显示了不同的增长速率和周期性安排, 而结果 AAOs 变得更加脆弱, 而纳米的密度则降低了30。此外, 需要一个昂贵的冷却系统, 以驱散由高电流密度引起的焦耳的加热31。这些结果限制了 AAOs 通过 HA 过程的潜在适用性。

在铝板的相应表面分离出一个阳极氧化铝时, 在 MA 和 HA 过程中使用有毒化学物质, 如氯化铜35,39, 对剩余铝基板的选择性化学蚀刻得到了最广泛的应用. 4142或水银氯161743444547,48,49. 然而, 这种方法会产生不利的副作用,如: 如, 较长的反应时间与 Al 的剩余厚度成正比, 重金属离子对阳极氧化铝的污染, 对人体/自然环境的有害残留物。, 而且有价值的资源使用效率低下。因此, 许多试图实现直接剥离的阳极氧化铝。虽然两个阴极电压分层50,51和阳极电压脉冲剥离7,41,42,52, 53,54,55目前的优点是, 剩余的铝基板可以被重用, 前者的技术在化学蚀刻方法中需要几乎可比的时间50。尽管处理时间明显减少, 有害和高活性化学品, 例如二和/或高氯酸, 被用作分离电解质在后者的技术55, 其中一个额外的清洁由于阳极氧化和分离过程中电解质的变化, 需要进行工艺过程。特别是分离 AAOs 的分离行为和质量严重影响了其厚度。在具有相对较薄厚度的阳极氧化铝的情况下, 分离的一个可能含有裂纹和/或孔径。

上述所有试验方法都已应用于 Al 试样的 “单面”, 不包括表面保护/工程用途, 而传统技术的这一特性也显示了氧化铝制造的关键局限性。在产量和加工方面, 这也影响了 AAOs56,57的潜在适用性。

为了满足日益增长的需求, 在氧化铝相关领域的轻便, 高产, 绿色技术的方法, 我们先前报告的 SMSA 和直接支队通过 srb 在硫酸56和草酸57酸电解质, 分别。这是一个众所周知的事实, 复数 AAOs 可以形成多表面的铝基板浸入酸性电解质。然而, srb, 一个关键的区别, 我们的方法, 使这些 AAOs 从相应的铝基板的 multi-surfaces 在相同的酸性电解质用于 SMSAs 指示 mass-production, 简单, 和绿色技术特征.我们想指出的是, SRBs-based 支队是 SMSAs56,57的复数 AAOs 的最佳策略, 并且与 AAOs57的相对较薄的厚度相比, 更有效。单面上的阴极分层 (, 恒定反向偏置)f “>> 51。最后, 由 SMSAs 顺序组合而成的 SRBs-based 分离器的单元序列可以重复地应用到相同的 Al 衬底, 避免复杂的程序和有毒/活性化学品, 从而强化了我们战略, 并保证自然资源的有效利用。

Protocol

开始前请注意所有相关的材料安全数据表 (MSDS)。尽管该协议具有生态友好性, 但在相应的程序中使用了一些酸和氧化剂。此外, 使用所有适当的个人防护设备 (实验室大衣, 手套, 安全眼镜, 等 ). 1. 解决方案的准备 注意: 在解决方案包含的容器完全密封后, 在足够的时间内, 在室温下对所有溶液进行了强磁搅拌. 高氯酸溶液的制备 <…

Representative Results

nth的流程图主要由 two-step SMSAs、srb 剥离和相关化学蚀刻组成, 在图 1a中作了概要介绍。每个插图显示一个扫描电子显微镜 (SEM) 图像的对应的表面形貌在每个单独的程序和一张照片后立即采取 srb-支队。在单元序列的总 5th重复之后的示意图说明显示了 SMSA 和 SRBs-based 策略的优点 (图 1b)。分别在<strong class="xf…

Discussion

在本文中, 我们成功地展示了一种简便、高产、环保的方法, 通过 SMSA 和 srb 分离制备纳米多孔 AAOs, 可以重复到相同的铝基板, 从而显著提高质量性以及有限的天然资源的可用性。如图 1a的流程图所示, 我们的氧化铝制造策略是基于传统的 two-step 阳极氧化, 在 multi-surfaces 情况下进行了修改。因为电场在抛光和 two-step SMSAs 规程在正常方向被形成了在 multi-surfaces, 电化学反应发生,…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者没有什么可透露的。

Materials

Sulfuric Acid >98% DUKSAN reagent 5950
Oxalic Acid Anhydrous, 99.5-100.2% KANTO chemical 31045-73
Phosphoric Acid, 85% SAMCHUN chemical P0463
Perchloric Acid, 60% SAMCHUN chemical P0181 Highly Reactive
Chromium(VI) Oxide Sigma Aldrich 232653 Strong Oxidizer
Ethanol, 95% SAMCHUN chemical E0219
Absolute Ethanol, 99.9% SAMCHUN chemical E1320
Double Jacket Beaker iNexus 27-00292-05
Low Temperature Bath Circulator JEIO TECH AAH57052K
Programmable DC Power Supply PNCYS EDP-3001 
Aluminum Plate, >99.99% Goodfellow
Platinum Cylinder Whatman 444685
Pure & Ultra Pure Water System (Deionized Water) Human Science Pwer II & HIQ II

References

  1. Hong, Y. K., et al. Tuning and enhancing photoluminescence of light-emitting polymer nanotubes through electron-beam irradiation. Adv. Funct. Mater. 19 (4), 567-572 (2009).
  2. Hong, Y. K., et al. Fine Characteristics Tailoring of Organic and Inorganic Nanowires Using Focused Electron-Beam Irradiation. Angew. Chem. Int. Ed. 50 (16), 3734-3738 (2011).
  3. Lee, J. H., et al. Iron-gold barcode nanowires. Angew. Chem. Int. Ed. 46 (20), 3663-3667 (2007).
  4. Qin, L., Banholzer, M. J., Millstone, J. E., Mirkin, C. A. Nanodisk codes. Nano Lett. 7 (12), 3849-3853 (2007).
  5. Park, D. H., Kim, M. S., Joo, J. Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications. Chem. Soc. Rev. 39 (7), 2439-2452 (2010).
  6. Ahn, Y. K., et al. Enhanced electrochemical capabilities of lithium ion batteries by structurally ideal AAO separator. J. Mater. Chem. A. 3 (20), 10715-10719 (2015).
  7. Chen, J., Wang, S., Ding, L., Jiang, Y., Wang, H. Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery. J. Membr. Sci. 461, 22-27 (2014).
  8. Gao, Y., et al. Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale. 8 (27), 13280-13287 (2016).
  9. Hu, J., et al. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes. Nanoscale. 8 (26), 12958-12969 (2016).
  10. Kim, K., et al. Externally controlled drug release using a gold nanorod contained composite membrane. Nanoscale. 8 (23), 11949-11955 (2016).
  11. Poplausks, R., et al. Electrochemically etched sharp aluminium probes with nanoporous aluminium oxide coatings: Demonstration of addressed DNA delivery. RSC Adv. 4 (89), 48480-48485 (2014).
  12. Chen, X., Qiu, M., Ding, H., Fu, K., Fan, Y. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale. 8 (10), 5696-5705 (2016).
  13. Dervin, S., Dionysiou, D. D., Pillai, S. C. 2D nanostructures for water purification: graphene and beyond. Nanoscale. 8 (33), 15115-15131 (2016).
  14. Han, K., Heng, L., Wen, L., Jiang, L. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures. Nanoscale. 8 (24), 12318-12323 (2016).
  15. Kim, J., Kim, Y. H., Choi, S. H., Lee, W. Curved Silicon Nanowires with Ribbon-like Cross Sections by Metal-Assisted Chemical Etching. ACS Nano. 5 (6), 5242-5248 (2011).
  16. Zeng, Z., et al. Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Adv. Mater. 24 (30), 4138-4142 (2012).
  17. Lim, N., et al. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer. Nanoscale. 7 (32), 13489-13494 (2015).
  18. Zhang, J., Liu, X., Neri, G., Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 28 (5), 795-831 (2016).
  19. Blank, T. A., Eksperiandova, L. P., Belikov, K. N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B. 228, 416-442 (2016).
  20. Kim, Y., et al. Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators B. 141 (2), 441-446 (2009).
  21. Mahboob, M. R., Zargar, Z. H., Islam, T. A sensitive and highly linear capacitive thin film sensor for trace moisture measurement in gases. Sens. Actuators B. 228, 658-664 (2016).
  22. Sharma, K., Islam, S. S. Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor. Sens. Actuators B. 237, 443-451 (2016).
  23. Lee, W., Park , S. J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 114 (15), 7487-7556 (2014).
  24. Keller, F., Hunter, M., Robinson, D. Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100 (9), 411-419 (1953).
  25. Diggle, J. W., Downie, T. C., Goulding, C. W. Anodic oxide films on aluminum. Chem. Rev. 69 (3), 365-405 (1969).
  26. O’Sullivan, J. P., Wood, G. C. The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium. Proc. R. Soc. London A. 317 (1531), 511-543 (1970).
  27. Thompson, G. E., Wood, G. C. Porous anodic film formation on aluminium. Nature. 290 (5803), 230-232 (1981).
  28. Masuda, H., Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science. 268 (5216), 1466-1468 (1995).
  29. Masuda, H., Satoh, M. Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask. Jpn. J. Appl. Phys. 35 (1B), L126-L129 (1996).
  30. Chu, S. Z., Wada, K., Inoue, S., Isogai, M., Yasumori, A. Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High-Field Anodization. Adv. Mater. 17 (17), 2115-2119 (2005).
  31. Lee, W., Ji, R., Gösele, U., Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mater. 5 (9), 741-747 (2006).
  32. Li, Y., Zheng, M., Ma, L., Shen, W. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology. 17 (20), 5101-5105 (2006).
  33. Li, Y. B., Zheng, M. J., MA, L. High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range. Appl. Phys. Lett. 91 (7), 073109 (2007).
  34. Lee, W., et al. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature Nanotech. 3 (4), 234-239 (2008).
  35. Li, Y., Ling, Z. Y., Chen, S. S., Wang, J. C. Fabrication of novel porous anodic alumina membranes by two-step hard anodization. Nanotechnology. 19 (22), 225604 (2008).
  36. Schwirn, K., et al. Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization. ACS Nano. 2 (2), 302-310 (2008).
  37. Yao, Z., Zheng, M., MA, L., Shen, W. The fabrication of ordered nanoporous metal films based on high field anodic alumina and their selected transmission enhancement. Nanotechnology. 19 (46), 465705 (2008).
  38. Lee, W., Kim, J. C., Cösele, U. Spontaneous Current Oscillations during Hard Anodization of Aluminum under Potentiostatic Conditions. Adv. Funct. Mater. 20 (1), 21-27 (2010).
  39. Yi, L., Zhiyuan, L., Shuoshuo, C., Xing, H., Xinhua , H. Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. Chem. Commun. 46 (2), 309-311 (2010).
  40. Kim, M., Ha, Y. C., Nguyen, T. N., Choi, H. Y., Kim, D. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures. Nanotechnology. 24 (50), 505304 (2013).
  41. Chen, W., Wu, J. S., Yuan, J. H., Xia, X. H., Lin, X. H. An environment-friendly electrochemical detachment method for porous anodic alumina. J. Electroanal. Chem. 600 (2), 257-264 (2007).
  42. Gao, L., Wang, P., Wu, X., Yang, S., Song, X. A new method detaching porous anodic alumina films from aluminum substrates. J. Electroceram. 21 (1-4 SPEC), 791-794 (2008).
  43. Asoh, H., Nishio, K., Nakao, M., Tamamura, T., Masuda, H. Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al. J. Electrochem. Soc. 148 (4), B152-B156 (2001).
  44. Wu, M. T., Hon Leu, I. C., H, M. Effect of polishing pretreatment on the fabrication of ordered nanopore arrays on aluminum foils by anodization. J. Vac. Sci. Technol., B. 20 (3), 776-782 (2002).
  45. Asoh, H., Ono, S., Hirose, T., Nakao, M., Masuda, H. Growth of anodic porous alumina with square cells. Electrochim. Acta. 48 (20-22), 3171-3174 (2003).
  46. Masuda, H., et al. Ordered Mosaic Nanocomposites in Anodic Porous Alumina. Adv. Mater. 15 (2), 161-164 (2003).
  47. Chu, S. Z., et al. Large-Scale Fabrication of Ordered Nanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization. J. Electrochem. Soc. 153 (9), B384-B391 (2006).
  48. Byun, J., Lee, J. I., Kwon, S., Jeon, G., Kim, J. K. Highly Ordered Nanoporous Alumina on Conducting Substrates with Adhesion Enhanced by Surface Modification: Universal Templates for Ultrahigh-Density Arrays of Nanorods. Adv. Mater. 22 (18), 2028-2032 (2010).
  49. Gong, J., Butler, W. H., Zangari, G. Tailoring morphology in free-standing anodic aluminium oxide: Control of barrier layer opening down to the sub-10 nm diameter. Nanoscale. 2 (5), 778-785 (2010).
  50. Schneider, J. J., Engstler, J., Budna, K. P., Teichert, C., Franzka, S. Freestanding, highly flexible, large area, nanoporous alumina membranes with complete through-hole pore morphology. Eur. J. Inorg. Chem. 2005 (12), 2352-2359 (2005).
  51. Choudhary, E., Szalai, V. Two-step cycle for producing multiple anodic aluminum oxide (AAO) films with increasing long-range order. RSC Adv. 6 (72), 67992-67996 (2016).
  52. Yuan, J. H., He, F. Y., Sun, D. C., Xia, X. H. A Simple Method for Preparation of Through-Hole Porous Anodic Alumina Membrane. Chem. Mater. 16 (10), 1841-1844 (2004).
  53. Yuan, J. H., Chen, W., Hui, R. J., Hu, Y. L., Xia, X. H. Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes. Electrochim. Acta. 51 (22), 4589-4595 (2006).
  54. Zhao, S., Chan, K., Yelon, A., Veres, T. Preparation of open-through anodized aluminium oxide films with a clean method. Nanotechnology. 18 (24), 245304 (2007).
  55. Brudzisz, A., Brzózka, A., Sulka, G. D. Effect of processing parameters on pore opening and mechanism of voltage pulse detachment of nanoporous anodic alumina. Electrochim. Acta. 178, 374-384 (2015).
  56. Hong, Y. K., Kim, B. H., Kim, D. I., Park, D. H., Joo, J. High-yield and environment-minded fabrication of nanoporous anodic aluminum oxide templates. RSC Adv. 5 (34), 26872-26877 (2015).
  57. Jeong, S. H., et al. Massive, eco-friendly, and facile fabrication of multi-functional anodic aluminum oxides: application to nanoporous templates and sensing platforms. RSC Adv. 7 (8), 4518-4530 (2017).
  58. Houser, J. E., Hebert, K. R. The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nature Mater. 8 (5), 415-420 (2009).
  59. Jessensky, O., Müller, F., Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72 (10), 1173-1175 (1998).
  60. Li, F., Zhang, L., Metzger, R. M. On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide. Chem. Mater. 10 (9), 2470-2480 (1998).
  61. Li, A. P., Müller, F., Bimer, A., Nielsch, K., Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84 (11), 6023-6026 (1998).
  62. Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B., Gösele, U. Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule. Nano Lett. 2 (7), 677-680 (2002).
  63. Yanagishita, T., Masuda, H. High-Throughput Fabrication Process for Highly Ordered Through-Hole Porous Alumina Membranes Using Two-Layer Anodization. Electrochim. Acta. 184, 80-85 (2015).

Play Video

Citer Cet Article
Im, H., Jeong, S. H., Park, D. H., Kim, S., Hong, Y. K. Simultaneous Multi-surface Anodizations and Stair-like Reverse Biases Detachment of Anodic Aluminum Oxides in Sulfuric and Oxalic Acid Electrolyte. J. Vis. Exp. (128), e56432, doi:10.3791/56432 (2017).

View Video