Metodi per la generazione di librerie di gRNA su larga scala dovrebbero essere semplice, efficiente e conveniente. Descriviamo un protocollo per la produzione di gRNA librerie basate su digestione enzimatica del DNA bersaglio. Questo metodo, CORALINA (generazione della libreria completa gRNA attraverso attività controllata nucleasi) presenta un’alternativa alla sintesi del oligonucleotide personalizzato costosi.
La popolarità del sistema CRISPR/Cas9 per genoma sia epigenome ingegneria deriva dalla sua semplicità e adattabilità. Un effettore (le nucleasi Cas9 o una proteina di fusione di nucleasi-morti dCas9) è mirato a un sito specifico nel genoma di un piccolo RNA sintetico noto come guida RNA, o gRNA. La natura bilaterale del sistema CRISPR consente l’utilizzo di approcci di screening poiché librerie plasmide contenente cassette di espressione di migliaia di singoli gRNAs possono essere utilizzati per interrogare molti siti diversi in un singolo esperimento.
Ad oggi, gRNA sequenze per la costruzione di librerie sono state generate quasi esclusivamente di sintesi del oligonucleotide, che limita la complessità realizzabile delle sequenze nella libreria ed è relativamente costosa. Qui, un dettagliato protocollo per CORALINA (generazione della libreria completa gRNA attraverso attività controllata nucleasi), un semplice e conveniente metodo per la generazione di librerie di gRNA altamente complessi basati sulla digestione enzimatica di input del DNA, è descritto. Poiché le librerie CORALINA possono essere generate da qualsiasi fonte di DNA, un sacco di opzioni di personalizzazione esiste, permettendo una grande varietà di schermi basati su CRISPR.
L’adattamento del sistema CRISPR/Cas9 batterico come un strumento per il targeting molecolare ha causato la più recente rivoluzione nella biologia molecolare. Mai è stato così facile da manipolare cromatina alle posizioni definite genomici. Applicazioni comuni di CRISPR includono genica mirata mutazioni1, genoma ingegneria2epigenome modifica3, attivazione trascrizionale e4il silenziamento genico. Un particolare vantaggio del sistema CRISPR è che le sue applicazioni non sono limitate a siti candidati ben studiato, come librerie di gRNA rendono meno prevenuti schermi possibile. Questi facilitano la scoperta di loci funzionali del genoma senza alcuna conoscenza sperimentale. Tuttavia, la costruzione della libreria gRNA è attualmente principalmente basata sulla sintesi di oligo-nucleotidi e ci sono opzioni limitate per l’acquisto di gRNA librerie che non sono di essere umano o regioni di origine o destinazione del mouse di fuori aprire lettura cornici. Così, anche se CRISPR schermi hanno già dimostrato incredibilmente potente5,6,7,8, appieno il loro potenziale non è ancora stato sfruttato.
Per superare la limitazione delle due strategie di gRNA classica generazione metodi sono stati recentemente sviluppati. Entrambi sono basati sulla digestione enzimatica controllata del DNA bersaglio, piuttosto che basarsi su sintesi del oligonucleotide personalizzato. Mentre CORALINA9 impiega nucleasi di micrococcal, il metodo alternativo solo attualmente disponibile, mangia-CRISPR10, fa uso degli enzimi di restrizione (HpaII, ScrFI, Bfaio e Mmeho). Cosa importante, entrambe le tecniche possono essere applicate a qualsiasi ingresso del DNA, che serve come fonte di gRNA protospacer sequenze. Mentre il metodo mangia-CRISPR utilizza una strategia per ridurre il numero di clonato gRNAs cui targeting siti non vengono seguite da PAM s. pyogenes richiesto (protospacer motivo adiacenti), che genera solo una piccola frazione di tutte le possibili gRNAs funzionale per una determinata regione. CORALINA, d’altra parte, è in grado di generare tutti i potenziali gRNAs per la sequenza di origine, ma incorpora anche un’ più alta frazione di guide non funzionali. generazione della libreria gRNA attraverso l’attività della nucleasi controllata consente la produzione di librerie gRNA completa per tutte le specie, qualsiasi sistema Cas9-proteina o – effector in modo semplice ed economico. Inoltre, CORALINA è adattabile alla personalizzazione, come scelte appropriate di ingresso e il vettore di definiscono il tipo di libreria, la dimensione e il contenuto. Qui, un protocollo dettagliato è presentato che può essere utilizzato per la generazione di librerie complete gRNA provenienti da fonti diverse di DNA (Figura 1), tra cui cromosomi artificiali batterici (BACs) o genomic DNA9. I risultati rappresentativi che accompagna questo protocollo sono stati derivati applicando il protocollo CORALINA al DNA di BAC.
CORALINA può essere utilizzato per generare librerie gRNA su larga scala tramite digestione controllata nucleasi del DNA bersaglio e clonazione di frammenti incagliati doppi risultanti in massa. Inferenza statistica indica che molti più di 107 gRNA singole sequenze hanno già stati clonati con successo utilizzando il protocollo a mano9. CORALINA può essere personalizzato in vari modi. La scelta del modello del DNA definisce la regione di destinazione e la massima complessità della biblioteca generata. Usando questo protocollo, CORALINA librerie precedentemente sono state generate dall’essere umano e del mouse di DNA genomic9. Risultati rappresentativi presentati qui raffigurano la generazione di una libreria CORALINA da DNA purificato di BAC. Ulteriore personalizzazione può essere raggiunto dalla scelta delle sequenze di vettore e del linker espressione gRNA. In precedenza abbiamo testato tre diverse paia di lunghezze del linker per assembly Gibson con piccole variazioni in efficienza9.
Dovuto la loro origine dal DNA digerito alla rinfusa, protospacer di CORALINA gRNAs non sono solitamente esattamente 20 bp in lunghezza, ma Visualizza una distribuzione di lunghezza con una media che dipende da entrambi i parametri della digestione MNase nonché la dimensione dell’asportazione effettuata dal gel pagina s. l’esempio rappresentativo, mostrato in Figura 2B e C, raffigura frammenti con una lunghezza mediana tra 19 e 27 bp. Nella nostra esperienza, la lunghezza dei frammenti è conservata fedelmente dalla gRNA generato protospacer9. Mentre frammenti più breve di 20 bp dovrebbe essere evitato a causa di più alto tasso di fuori bersaglio di gRNAs risultante, frammenti più lunghi sono probabilmente molto meno di un problema per le applicazioni a valle, poiché è stato dimostrato che gRNAs con protospacers fintanto che 45 bp sono ancora funzionale9.
I due passaggi più critici nel protocollo CORALINA sono la selezione della dimensione dei frammenti MNase-digerito e procedura di clonazione. Generazione di frammenti che sono troppo brevi (ad es. media inferiore a 18 bp) o incorporazione di vettori di espressione vuota gRNA troppi renderà la libreria inutile. Pertanto, è importante ottimizzare la fase di digestione di MNase (Figura 2A), per monitorare l’asportazione (Figura 2B, C), controllare per digestione completa del backbone gRNA vettoriale e non compresi controlli di frammento in tutto il protocollo. Speciale cura deve anche essere adottate per preservare la rappresentazione della libreria gRNA. Un collo di bottiglia comune di generazione della libreria è in generale il trasferimento efficiente di plasmidi in batteri per l’amplificazione. Così, grandi quantità di batteri con eccellente competenza e un gran numero di eventi singoli elettroporazione sono necessari per il raggiungimento di un elevato numero di cloni gRNA.
Nuove strategie per la produzione di gRNA biblioteca sarà necessarie raccogliere tutte le potenzialità di approcci di screening basato su CRISPR per i prossimi decenni. C’è una forte domanda di metodi conveniente, semplice e personalizzabile per generare librerie su larga scala, un pre-requisito per fare lo screening favorevoli a un maggior numero di sistemi modello e differenti approcci di ingegneria basati su CRISPR. CORALINA sta fornendo un primo passo verso questo. Le possibilità di utilizzo sono molteplici, soprattutto per la produzione di librerie complete di genomi, cDNA derivati librerie di meno comuni sistemi modello, biblioteche altamente focalizzate e set-up sperimentale nel quale diverse proteine CRISPR (con differenti PAM requisiti) sono usati in combinazione.
A differenza di altri metodi, CORALINA genera tutte le possibili gRNAs dall’ingresso del DNA. Tuttavia, uno svantaggio del metodo è che gRNAs manca la sequenza desiderata di PAM sono anche inclusi nella libreria, una caratteristica che condivide con un secondo metodo enzimatico per la generazione della libreria gRNA, CRISPR-mangiare (tabella 1). La scelta del metodo ideale per la generazione della libreria gRNA dipende dalle specifiche dello screening programmato sperimentare, soprattutto la natura (genica, regolamentazione, intergenica) e dimensione dell’area di destinazione (singolo locus, più regioni, genoma). Vediamo un rialzo speciale utilizzando CORALINA quando un gran numero di non-codificazione o regioni regolatorie devono essere analizzati, se c’è informazioni di sequenza incompleta o inaffidabile (sistemi di modello esotico, miscugli di specie (ad es. microbiomi) o ottenuti sperimentalmente l’input), se si combinano diverse endonucleasi CRISPR o saturando l’analisi viene eseguita su un locus breve e definito (ad esempio rappresentato da BACs).
The authors have nothing to disclose.
Gli autori piacerebbe ringraziare Dr. Stephan Beck e Prof. Dr. Magdalena Goetz per il loro contributo, guida e supporto nello sviluppo del metodo CORALINA, Maximilian Wiessbeck e Valentin Baumann per utili commenti. L’opera è stata sostenuta da DFG (STR 1385/1-1).
500 mM EGTA | Sigma Aldrich | 03777-10G | 1.4., Inactivation of Mnase |
Novex Hi-Density TBE Sample Buffer | Thermo Fisher Scientific | LC6678 | 2.1. |
Novex® TBE Gels, 20%, 10 well | Thermo Fisher Scientific | EC6315BOX | 2.1., pre-made 20 % PAGE gel |
O'RangeRuler 5 bp DNA Ladder, | Thermo Fisher Scientific | SM1303 | 2.1. |
Novex® TBE Running Buffer | Thermo Fisher Scientific | LC6675 | 2.1., PAGE gel running buffer |
Disposable scalpel, sterile | VWR | 233-5363 | 2.3., other equivalent reagents may be used |
SYBR Green I nucleic acid stain (1000x concentrate in DMSO) | Sigma Aldrich | S9430 |
2.3. +2.5., also available from Thermo Fisher Scientific (S7563) |
UltraPure Phenol:Chloroform:Isoamyl Alcohol (25:24:1) | Thermo Fisher Scientific | 15593-031 | 3.6.1. + 4.3., other equivalent reagents may be used |
Glycogen | Sigma | 10901393001 | 3.6.4., other equivalent reagents may be used |
3M Sodium acetate , pH5.2 | Thermo Fisher Scientific | R1181 | 3.6.4., other equivalent reagents may be used |
Ethanol | 3.6.4. + 9.1.8., molecular biology grade | ||
Quick blunting kit | New England Biolabs | E1201 | 4.1. |
ammomium acetate | Sigma | A1542 |
3.1., other equivalent reagents may be used |
magnesium acetate | Sigma | M5661 |
3.1., other equivalent reagents may be used |
0.5 M EDTA (pH 8.0) | VWR | MOLEM37465520 (or Promega V4231) | 2.2. + 3.1., other equivalent reagents may be used |
Agencourt AMPure XP beads | Beckman coulter | A63881 | 5.3. + 6.5. |
Gel extraction kit | QIAGEN | 28704 | 5.7.+ 7.1. +8.4., other equivalent reagents may be used |
concentrated T4 DNA ligase | New England Biolabs | M0202T | 6.1.+ 8.1.2. |
Long Amp Taq 2X Master Mix | New England Biolabs | M0287S | 6.3. |
Phusion High-Fidelity PCR Master Mix with HF Buffer | New England Biolabs | M0531S | 5.1. + 6.6., other equivalent reagents may be used |
HindIII | New England Biolabs | R0104S | 5.4.1. |
SacII | New England Biolabs | R0157S | 5.4.2. |
AgeI | New England Biolabs | R0552S | 8.2.1. |
Tris base | Sigma | 93362 | 8.1.1. |
2M MgCl | Sigma | 93362 | 8.1.1. |
dGTP,dATP, dCTP, dTTP | New England Biolabs | N0446S | 8.1.1. |
DTT | Sigam | DTT-RO |
8.1.1. |
PEG-8000 | Sigma | P5413 |
8.1.1. |
NAD | Sigma | N6522 |
8.1.1. |
T5 exonuclease | New England Biolabs | M0363S | 8.1.2. |
Phusion DNA polymerase | New England Biolabs | M0530S | 8.1.2. |
Taq DNA ligase | New England Biolabs | M0208L | 8.1.2. |
rSAP | New England Biolabs | M0371S | 8.3.1. |
TG1 competent cells | Lucigen | 60502-1 | 9.1. |
1mm gap electroporation cuvettes | VWR | 732-2267 | 10.2. |
Bio-Assay Dish (Polystyrene, 245 mm x 245 mm x 25 mm) | Fisher Scientific | DIS-988-010M | 9.4. |
NaCl | Sigma | S7653 | 9.3. |
Bacto-tryptone | BD | 211705 | 9.3. |
Yeast extract | BD | 212750 | 9.3. |
Agar | Sigma | A1296 |
9.4. |
Glycerol | Sigma | G5516 |
9.17. |
MNAse | New England Biolabs | M0247S | 1.1. |
Nanodrop | Thermo Fisher Scientific | ND-2000 | throughout |
Micropulser | Biorad | 165-2100 | 10.2. |
Electroporation cuvettes | Biorad | 732-2267 | 10.2. |
250 ml centrifuge tubes | Corning | 430776 | 9.1-9.9. |