Summary

腺相关病毒和共聚焦显微镜对器官脑切片胶质细胞器的可视化和实时成像

Published: October 23, 2017
doi:

Summary

形成突促进了快速动作电位的传播和神经元的存活。这里描述的是一个协议的胶质特异表达荧光蛋白在器官脑切片与后续的延时成像。此外, 一个简单的程序, 可视化不髓鞘提出。

Abstract

神经元依赖于形成突的电绝缘和营养支持。尽管突的重要性, 目前用于研究神经元的先进工具, 只是部分被胶质研究人员所接受。细胞类型特异性染色的病毒转导是一个有用的方法来研究活体细胞动力学。本文介绍了一种在转录控制下利用腺相关病毒 (AAV) 携带线粒体靶向荧光蛋白的基因对器官脑切片中胶质线粒体进行可视化的协议髓鞘碱性蛋白启动子。包括制作器官冠状小鼠脑切片的协议。一个过程中的线粒体的延时成像, 然后跟随。这些方法可以转移到其他的细胞器, 可能是特别有用的研究细胞在髓鞘。最后, 我们描述了一个现成的技术, 可视化的活体切片不髓鞘的共聚焦反射显微镜 (核心)。核心不需要额外的设备, 并可以用于识别髓鞘鞘在现场成像。

Introduction

大脑的白质是由髓鞘包裹的神经细胞轴突组成的, 这是由突所形成的一种专门的扩展等离子体膜。髓鞘是需要快速和可靠的动作电位传播和长期生存的髓轴突, 并失去髓鞘可能导致神经功能障碍。尽管它们的重要性, 与神经元和星形胶质细胞相比, 突的性质是不为人知的。因此, 为研究突而开发的工具越来越少。

活体成像的细胞器, 如线粒体, endoplasmatic 网 (ER) 或不同的水泡结构, 可以用来研究动态变化, 随着时间的推移。传统上, 生活突的成像已经在单一1,2中执行。然而, 突在单养不显示致密髓鞘, 因此, 器官或急性脑切片可能是一个更好的选择, 在研究的本地化和运动的细胞器。由于髓轴突与周围髓鞘之间的短距离, 髓鞘内的小细胞器和蛋白质的定位可能具有挑战性。因此, 光是显微免疫程序就没有空间分辨率来区分髓鞘内的细胞器和髓轴突的细胞。这可以通过病毒转导与细胞型特异性促进剂驱动的器官靶向荧光蛋白的基因来解决。其优点是细胞特异性和稀疏表达式, 能够准确地评估器官的定位和动态。转基因动物也可以用来实现这样一个以细胞为目标的特定表达式3。然而, 转基因动物的生产和维护费用昂贵, 通常不提供可通过病毒方法实现的稀疏表达。

本文所描述的方法使用的病毒转导突与线粒体靶向荧光蛋白 (dsred 或绿色荧光蛋白, gfp) 驱动的髓鞘碱性蛋白促进剂 (细胞内 dsred 或绿细胞-gfp), 以可视化器官脑切片中的胶质线粒体。此外, 另一种荧光蛋白在细胞质中的表达 (无论是 gfp 与 dsred 或 tdtomato 与美图-gfp 一起使用) 是用来使细胞形态学的可视化, 包括髓鞘鞘的细胞质。该协议包括制作器官脑切片的程序 (由 De Simoni 和 Yu 描述的修改后的协议版本, 20064,5)。然后我们描述了用于研究线粒体运动的延时成像程序。这个过程使用一个直立的共焦显微镜与连续交换成像介质, 设置, 使易于应用的药物或其他媒体的变化, 在成像。延时成像程序可以在任何共聚焦显微镜下进行, 有些额外的设备用于维持活体切片, 如下所述。该协议还包含一些优化成像和减少光的提示。

最后, 本文介绍了一种快速、简便的共焦反射显微镜 (CoRe) 可视化不髓鞘的方法。这可能是有用的, 以确定髓鞘鞘的实时成像。近年来, 一些技术已经发展到图像髓鞘不需要任何染色, 但其中大多数需要特定的设备和专长6,7,8。这里描述的过程使用髓鞘的反射的物产并且是一个简单的 single-excitation 波长版本光谱共焦反射显微镜 (比分, 几 laser 波长被结合形象化髓鞘)9. 核心可以在具有 488 nm 激光和 470-500 nm 带通发射过滤器或可调谐发射过滤器的任何共焦显微镜上进行。

Protocol

此处所述的程序已得到挪威动物研究局的批准。文件末尾的材料清单中提供了消耗品和其他所需设备的供应商和目录号. 1. 器官切片的制备 注意: 此食谱在产后日 7-9 (p7-9) 使用两只小鼠幼崽, 在两个六良好的培养皿上分别产生24器官切片。除非另有说明, 所有的程序应在无菌罩和 nitril 或乳胶手套使用。只应使用细胞培养级成分. 高压釜瓶, 解剖…

Representative Results

器官脑切片的培养和转如上所述, 显示了稀疏分布的皮质突表达 mito_dsred 和 GFP。免疫与抗体抗 Olig2 和碱性髓鞘证实, 表达特定于突 (图 1)。 对于活体成像, 转突是公认的几个平行运行的髓鞘鞘的特征形态学 (图 1和图 2A)。通过在转突上执行延时成像, 可以监测主…

Discussion

此处描述的器官区域性的协议是由 De Simoni 和 Yu (2006)5所描述的协议的修改版本18 。下文概述了最重要的变化。培养基中添加了三个缓冲液, 在病毒转导和细胞培养基的变化过程中, 提高了孵化室外的切片成活率。纸屑的灭菌程序也发生了变化。虽然其他协议消毒五彩纸屑由灭菌, 我们不建议这样做, 因为它会导致几个五彩纸屑卷曲。避免使用卷曲的纸屑, 因为在?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢琳达 Hildegard 博格森和 Magnar Bjørås 获得细胞实验室和设备, Janelia 分子生物学共享资源人员的质粒和病毒生产和公园 Vervaeke, 以协助激光功率测量。这项工作由挪威卫生协会资助, 挪威研究理事会和显微镜设备由 Norbrain 资助。

Materials

Agarose  Sigma  A9539
BD Microlance 19G BD 301500 Needles used for in- and outlet of bath
Bioxide gas AGA 105701
Brand pipette bulbs Sigma-Aldrich Z615927 Pipette bulbs
Bunsen burner (Liquid propane burner) VWR 89038-530
Cable assembly for heater controllers Warner Instruments 64-0106  Temperature controller – thermometer part
CaCl2 Fluka 21100
CO2  AGA 100309 CO2 for incubator
Cover glass, square Corning Thermo  Fischer Scientific 13206778 To attach under bath for live imaging. Seal with glue or petrolium jelly.
D-(+)-Glucose Sigma G7021
Delicate forceps Finescience 11063-07 For dissection
Diamond scriber pen Ted Pella Inc. 54463
Disposable Glass Pasteur Pipettes 230 mm VWR 612-1702 Glass pipettes
Double edge stainless steel razor blade Electron Microscopy Sciences #7200 Razor blade for vibratome
Earle's Balanced Salt Solution (EBSS) Gibco-Invitrogen 24010-043
Filter paper circles Schleicher & Schuell 300,220 Filter paper used for filtration of PFA
Fun tack Loctite 1270884 Use to connect/adjust position of in- and outlets in bath
Hand towel C-Fold 2 Katrin 344388
Harp, Flat for RC-41 Chamber, Warner Instruments  64-1418 Harp to hold down confetti in bath. Cut off strings before use with organotypic slices. 1.5 mm, 13mm, SHD-41/15
HEPES, FW: 260.3 Sigma H-7006
Holten LaminAir, Model 1.2 Heto-Holten 96004000M Laminar flow hood
Horse serum, heat inactivated Gibco-Invitrogen 26050-088
KCl Sigma P9541
LCR Membrane, PTFE,  Millipore FHLC0130 Confetti 
Leica VT1200 Leica 14048142065 Vibratome
MEM-Glutamax with HEPES Thermo  Fischer Scientific 42360024
MgCl2 R.P. Normapur 25 108.295
Micro Spoon Heyman Type B Electron Microscopy Sciences 62411-B Small, rounded spatula with sharpened end for dissection
Millex-GP filter unit Millipore SLGPM33RA Syringe filter unit
Millicell cell culture insert, 30 mm Millipore PICM03050 Cell culture inserts
Minipuls 3 Speed Control Module GILSON F155001 Peristaltic pump for live imaging – Control module part (connect to two-cannel head)
Na2HPO4 Sigma-Aldrich S7907
NaCl Sigma-Aldrich S9888
NaH2PO4 Sigma-Aldrich S8282
NaHCO3 Fluka 71628
Nunclon Delta Surface Thermo  Fischer Scientific 140675 Culture plate
Nystatin Suspension Sigma-Aldrich N1638
Objective W "Plan-Apochromat" 40x/1.0 DIC  Zeiss 441452-9900-000  Water immersion objective used for live imaging. (WD=2.5mm), VIS-IR
Parafilm VWR 291-1211
Paraformaldehyde, granular Electron Microscopy Sciences #19208
PC-R perfusion chamber SiSkiYou  15280000E Bath for live imaging
Penicillin-Streptomycin, liquid Invitrogen 15070-063
Petri dish 140 mm  Heger 1075 Large Petri dish 
Petri dish 92×16 mm  Sarstedt  82.1473 Medium Petri dish 
Petridish 55×14,2 mm VWR 391-0868 Small Petri dish
Phosphate buffered saline (PBS) Sigma P4417 PBS tablets
R2 Two Channel Head  GILSON F117800 Peristaltic pump for live imaging – Two channel head part (requires control module)
Round/Flat Spatulas, Stainless Steel VWR 82027-528 Large spatula for dissection
Sand paper VWR MMMA63119 Optional, for smoothing broken glass pipettes
Scissors,  17,5 cm Finescience 14130-17 Large scissors for dissection
Scissors, 8,5  Finescience 14084-08 Small, sharp scissors for  dissection
Single edge, gem blade Electron Microscopy Sciences #71972 Single edge razor blade
Single inline solution heater SH-27B Warner Instruments 64-0102 Temperature controller – heater part
Steritop-GP Filter unit, 500 ml , 45mm Millipore SCGPT05RE Filter to sterilize solutions
Super glue precision Loctite 1577386
Surgical scalpel blade no. 22 Swann Morton Ltd. 209 Rounded scalpel blade
Temperature controller TC324B Warner Instruments 64-0100 Temperature controller for live imaging (requires solution heater and cable assembly)
Trizma base Sigma  T1503
Trizma HCl Sigma T3253
Water jacketed incubator series II Forma Scientific 78653-2882 Incubator

References

  1. Barry, C., Pearson, C., Barbarese, E. Morphological organization of oligodendrocyte processes during development in culture and in vivo. Dev. Neursosci. 18, 233-242 (1996).
  2. Simpson, P. B., Mehotra, S., Lange, G. D., Russell, J. T. High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J. Biol. Chem. 272, 22654-22661 (1997).
  3. Sterky, F. H., Lee, S., Wibom, R., Olson, L., Larsson, N. G. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl. Acad. Sci. U. S. A. 1080, 12937-12942 (2011).
  4. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods. 37, 173-182 (1991).
  5. De Simoni, A., Yu, L. M. Preparation of organotypic hippocampal slice cultures: interface method. Nat. Protoc. 1, 1439-1445 (2006).
  6. Lim, H., et al. Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proc. Natl. Acad. Sci. U. S. A. 111, 18025-18030 (2014).
  7. Farrar, M. J., Wise, F. W., Fetcho, J. R., Schaffer, C. B. In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy. Biophys. J. 100, 1362-1371 (2011).
  8. Fu, Y., Wang, H., Huff, T. B., Shi, R., Cheng, J. X. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J. Neurosci. Res. 85, 2870-2881 (2007).
  9. Schain, A. J., Hill, R. A., Grutzendler, J. Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat. Med. 20, 443-449 (2014).
  10. Shin, J. H., Yue, Y., Duan, D. Recombinant adeno-associated viral vector production and purification. Methods Mol. Biol. 798, 267-284 (2012).
  11. Kunkel, T. A. Oligonucleotide-directed mutagenesis without phenotypic selection. Curr. Prot. Neurosci. , 4.10.1-4.10.6 (2001).
  12. Gow, A., Friedrich, V. L., Lazzarini, R. A. Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. J. Cell Biol. 119, 605-616 (1992).
  13. Rinholm, J. E., et al. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths. Glia. 64, 810-825 (2016).
  14. Rintoul, G. L., Filiano, A. J., Brocard, J. B., Kress, G. J., Reynolds, I. J. Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J. Neurosci. 23, 7881-7888 (2003).
  15. Jackson, J. G., O’Donnell, J. C., Takano, H., Coulter, D. A., Robinson, M. B. Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters. J. Neurosci. 34, 1613-1624 (2014).
  16. Macaskill, A. F., et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 61, 541-555 (2009).
  17. Karadottir, R., Attwell, D. Combining patch-clamping of cells in brain slices with immunocytochemical labeling to define cell type and developmental stage. Nat. Protoc. 1, 1977-1986 (2006).
  18. Rinholm, J. E., et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J. Neurosci. 31, 538-548 (2011).
  19. Davison, A. N., Dobbing, J. Myelination as a vulnerable period in brain development. Br. Med. Bull. 22, 40-44 (1966).
  20. Humpel, C. Organotypic brain slice cultures: A review. Neurosciences. 305, 86-98 (2015).
  21. Noraberg, J., Kristensen, B. W., Zimmer, J. Markers for neuronal degeneration in organotypic slice cultures. Brain Res. Protoc. 3, 278-290 (1999).
  22. Karra, D., Dahm, R. Transfection techniques for neuronal cells. J. Neurosci. 30, 6171-6177 (2010).
  23. Pignataro, D., et al. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Front. Neuroanat. 11 (2), (2017).
  24. Hutson, T. H., Verhaagen, J., Yanez-Munoz, R. J., Moon, L. D. Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector. Gene Ther. 19, 49-60 (2012).
  25. Neumann, S., Campbell, G. E., Szpankowski, L., Goldstein, L. S. B., Encalada, S. E. Characterizing the composition of molecular motors on moving axonal cargo using cargo mapping analysis. J. Vis. Exp. (92), e52029 (2014).

Play Video

Citer Cet Article
Kennedy, L. H., Rinholm, J. E. Visualization and Live Imaging of Oligodendrocyte Organelles in Organotypic Brain Slices Using Adeno-associated Virus and Confocal Microscopy. J. Vis. Exp. (128), e56237, doi:10.3791/56237 (2017).

View Video