Burada, kordon kanı mononükleer hücre kaynaklı insan kaynaklı pluripotent kök hücrelerden kondrojenik farklılaşma için bir protokol önermekteyiz.
İnsan eklem kıkırdağı kendini tamir etme becerisine sahip değildir. Kıkırdak dejenerasyonu bu nedenle tedavi edici değil, konservatif tedaviler ile tedavi edilir. Halen hasar görmüş kıkırdağı ex vivo genişletilmiş kondrositler veya kemik iliği kaynaklı mezenkimal kök hücreler (BMSC) ile yenilemek için çaba sarf edilmektedir. Bununla birlikte, bu hücrelerin kısıtlı canlılığı ve istikrarsızlığı, kıkırdak yeniden yapılandırma alanındaki uygulamalarını sınırlar. İnsan kaynaklı pluripotent kök hücreler (hiPSC'ler), rejeneratif uygulamalar için yeni bir alternatif olarak bilimsel bir ilgi görmüştür. Sınırsız kendi kendini yenileme kabiliyeti ve çok potansiyeli ile hiPSC'ler, kıkırdak onarımı için yeni bir yedek hücre kaynağı olarak vurgulanmıştır. Bununla birlikte, yüksek miktarda yüksek kaliteli kondrojenik pelet elde edilmesi, klinik uygulamaları için büyük bir zorluk oluşturmaktadır. Bu çalışmada, kondrojenik diferansiyasyon için embriyo gövdesi (EB) ile üretilmiş büyüme hücreleri kullanılmıştır. Başarılı kondrojenez PCR ile veD lekelenmesi alsi mavisi, toluidin mavisi ve kolajen tip I ve II'ye karşı antikorlar (sırasıyla COL1A1 ve COL2A1). Kordon kanı mononükleer hücre kaynaklı iPSC'lerin (CBMC-hiPSC'lerin) kondrojenik peletlere diferansiyelleştirilmesi için ayrıntılı bir yöntem sunmaktayız.
HİPSC'lerin kullanımı, çeşitli hastalıkların uyuşturucu taraması ve mekanik çalışmaları için yeni bir stratejiyi temsil etmektedir. Rejeneratif bir perspektiften hiPSC'ler, eklem kıkırdağı 1 , 2 gibi sınırlı iyileştirme kabiliyetine sahip hasarlı dokuların değiştirilmesi için potansiyel bir kaynaktır.
Doğal eklem kıkırdağının rejenerasyonu birkaç on yıl için zor olmuştur. Artiküler kıkırdak, yumuşak beyaz bir dokudur ve kemiklerin ucunu sürtünmeden korur. Bununla birlikte, zarar gördüğünde kendini yenilemek neredeyse imkansız kılan sınırlı rejeneratif kabiliyete sahiptir. Bu nedenle, kıkırdak yenilenmesine odaklanan araştırma, onlarca yıldır devam etmektedir.
Daha önce, in vitro olarak kondrojenik soya diferansiyasyon, genellikle diz eklemi 3'ten izole edilen BMSC'ler veya doğal kondrositler ile gerçekleştirildi. BitmişKondrojenik potansiyelleri, BMSC'ler ve doğal kondrositler, kondrojenezde kullanımlarını destekleyen çok sayıda avantaja sahiptir. Bununla birlikte, sınırlı genişleme ve kararsız fenotip yüzünden, bu hücreler eklem kıkırdak defekti rekonstrüksiyonu konusunda çeşitli sınırlamalarla karşı karşıya kalmaktadır. In vitro kültür koşulları altında, bu hücreler 3-4 geçitten sonra kendi özelliklerini kaybetme eğilimindedir ve bu da sonuçta onların farklılaşma yeteneklerini etkiler 4 . Ayrıca, doğal kondrositler durumunda, bu hücreleri elde ederken diz ekleminde ek hasar kaçınılmazdır.
BMSC'lerin veya doğal kondrositlerden farklı olarak, hiPSC'ler in vitro olarak sınırsız olarak genişleyebilir. Uygun kültür koşullarıyla, hiPSC'lerin kondrojenik farklılaşma için yedek bir kaynak olarak büyük potansiyeli vardır. Bununla birlikte, hiPSC'lerin içsel özelliklerini değiştirmek zordur 5 . Dahası, birkaç karmaşık in vitro süreç gerektirirPs hiPSCs'in kaderini belirli bir hücre türüne yönlendirmek için. Bu komplikasyonlara rağmen, yüksek kendiliğinden yenilenme kabiliyetleri ve kondrositleri de içeren hedeflenen hücrelere ayırma kapasiteleri nedeniyle hiPSC'lerin kullanımı hala önerilmektedir.
Kondrojenik farklılaşma, genellikle MSC benzeri progenitör hücreler kullanılarak pelet kültürü veya mikromüzk kültürü gibi üç boyutlu kültür sistemleri ile yapılır. HiPSC kullanıyorsa, MSC benzeri öncü hücreler üretmek için protokol mevcut protokollerden farklıdır. Bazı gruplar, fenotipi doğrudan MSC benzeri hücrelere dönüştürmek için hiPSC'lerin tek katmanlı kültürü kullanır 7 . Ancak, çoğu çalışma MSC 8 , 9 , 10 , 11'e benzeyen hücre büyümesi üretmek için EB'ler kullanır.
Kondrojayı indüklemek için çeşitli büyüme faktörleri kullanılır.Nesis. Genellikle, BMP ve TGFβ ailesi proteinleri tek başına veya kombinasyon halinde kullanılır. Farklılaşma, GDF5, FGF2 ve IGF1 12 , 13 , 14 , 15 gibi diğer faktörlerle de indüklenmiştir. TGFβ1'in MSC 16'da doza bağımlı bir tarzda kondrojenez uyarısı yaptığı gösterilmiştir. Diğer izotip ile karşılaştırıldığında, TGFβ3, TGFβ1, kıkırdak öncesi mezenşimal hücre yoğunlaşmasını arttırarak kondrojeneze neden olur. TGFβ3, mezenkimal hücre çoğalmasını önemli ölçüde arttırarak kondrojeneze neden olur17. Bununla birlikte, TGFβ3 araştırmacılar tarafından TGFβ1 7 , 10 , 18 , 19'dan daha sık kullanılır. BMP2, insan kondrojenik matris bileşenleri ile ilgili genlerin ekspresyonunu arttırırEklem kondrositlerinde in vitro koşullar altında 20 . BMP2, TGFβ proteinleri 21 ile kombinasyon halinde MSC'lerde kıkırdak oluşumu için kritik olan genlerin ekspresyonunu arttırır. Ayrıca, BMP2'nin Smad ve MAPK yolakları yoluyla TGFβ3'ün etkisini sinerjik olarak arttırdığı gösterilmiştir 22 .
Bu çalışmada CBMC-hiPSC'ler düşük ekli bir Petri kabında EB ortamı kullanılarak EB'lere toplandı. Gelişen hücreler, EB'leri jelatin kaplı bir çanağa tutturarak indüklenmiştir. Hücreleri kullanarak kondrojenik farklılaşma pelet kültürü ile gerçekleştirildi. Hem BMP2 hem de TGFβ3 ile yapılan muamele, hücreleri yoğun bir şekilde yoğunlaştırdı ve kondrojenik pelet oluşumu için hücre dışı matris (ECM) protein birikimine yol açtı. Bu çalışma, CBMC-hiPSC'leri kullanarak basit fakat etkin kondrojenik bir farklılaşma protokolünü önermektedir.
Bu protokol CBMC'lerden başarıyla hiPSC üretti. Yamanaka faktörleri 24 içeren bir Sendai viral vektörü kullanarak CBMC'leri hiPSC'ye yeniden programladık. Farklılaşmada üç vaka kullanıldı ve tüm deneyler bu protokolü kullanarak kondrojenik pelletleri başarıyla üretti. HiPSC'lerin kondrositlere 25 , 26 , 27 , 28 farklılaşması için p…
The authors have nothing to disclose.
Bu çalışma Sağlık Bakanlığı, Refah ve Aile İşleri Bakanlığı, Kore Cumhuriyeti (HI16C2177) tarafından yapılan Kore Sağlık Teknolojisi Ar-Ge projesinin bir hibesi tarafından desteklenmiştir.
Plasticware | |||
100mm Dish | TPP | 93100 | |
6-well Plate | TPP | 92006 | |
50 mL Cornical Tube | SPL | 50050 | |
15 mL Cornical Tube | SPL | 50015 | |
10 mL Disposable Pipette | Falcon | 7551 | |
5 mL Disposable Pipette | Falcon | 7543 | |
12-well Plate | TPP | 92012 | |
Name | Company | Catalog Number | Description |
E8 Medium Materials | |||
DMEM/F12, HEPES | Life Technologies | 11330-057 | E8 Medium (500 mL) |
Sodium Bicarbonate | Life Technologies | 25080-094 | E8 Medium (Conc.: 543 μg/mL) |
Sodium Selenite | Sigma Aldrich | S5261 | E8 Medium (Conc.: 14 ng/mL) |
Human Transfferin | Sigma Aldrich | T3705 | E8 Medium (Conc.: 10.7 μg/mL) |
Basic FGF2 | Peprotech | 100-18B | E8 Medium (Conc.: 100 ng/mL) |
Human Insulin | Life Technologies | 12585-014 | E8 Medium (Conc.: 20 μg/mL) |
Human TGFβ1 | Peprotech | 100-21 | E8 Medium (Conc.: 2 ng/mL) |
Ascorbic Acid | Sigma Aldrich | A8960 | E8 Medium (Conc.: 64 μg/mL) |
DPBS | Life Technologies | 14190-144 | |
Vitronectin | Life Technologies | A14700 | |
ROCK Inhibitor | Sigma Aldrich | Y0503 | |
Name | Company | Catalog Number | Description |
Quality Control Materials | |||
18 mm Cover Glass | Superior | HSU-0111580 | |
4% Paraformaldyhyde | Tech & Innovation | BPP-9004 | |
Triton X-100 | BIOSESANG | 9002-93-1 | |
Bovine Serum Albumin | Vector Lab | SP-5050 | |
Anti-SSEA4 Antibody | Millipore | MAB4304 | |
Anti-Oct4 Antibody | Santa Cruz | SC9081 | |
Anti-TRA-1-60 Antibody | Millipore | MAB4360 | |
Anti-Sox2 Antibody | Biolegend | 630801 | |
Anti-TRA-1-81 Antibody | Millipore | MAB4381 | |
Anti-Klf4 Antibody | Abcam | ab151733 | |
Alexa Fluor 488 goat anti-mouse IgG (H+L) antibody | Molecular Probe | A11029 | |
Alexa Fluor 594 goat anti-rabbit IgG (H+L) antibody | Molecular Probe | A11037 | |
DAPI | Molecular Probe | D1306 | |
Prolong gold antifade reagent | Invitrogen | P36934 | |
4% Paraformaldyhyde | Tech & Innovation | BPP-9004 | |
Tween 20 | BIOSESANG | T1027 | |
Bovine Serum Albumin | Vector Lab | SP-5050 | |
Anti-Collagen II antibody | abcam | ab34712 | 1:100 |
Alcian blue | Sigma Aldrich | A3157-10G | |
Fast Green FCF | Sigma Aldrich | F7252-25G | |
Safranin O | Sigma Aldrich | 090m0039v | |
Nuclear fast red | Americanmastertech | STNFR100 | |
xylene | Duksan | 115 | |
Ethanol | Duksan | 64-17-5 | |
Mayer's hematoxylin solution | wako pure chemical industries | LAK7534 | |
DAP | VECTOR LABORATORIES | SK-4100 | |
Slide Glass, Coated | Hyun Il Lab-Mate | HMA-S9914 | |
Trizol | Invitrogen | 15596-018 | |
Chloroform | Sigma Aldrich | 366919 | |
Isoprypylalcohol | Millipore | 109634 | |
Ethanol | Duksan | 64-17-5 | |
RevertAid First Strand cDNA Synthesis kit | Thermo Scientfic | K1622 | |
Name | Company | Catalog Number | Description |
Chondrogenic Differentiation Materials | |||
DMEM | Life Technologies | 11885 | Chondrogenic media component (500 mL) |
Penicilin Streptomycin | Life Technologies | P4333 | Chondrogenic media component (Conc.: 1 %) |
Ascorbic Acid | Sigma Aldrich | A8960 | Chondrogenic media component (Conc.: 64 μg/mL) |
MEM Non-Essential Amino Acids Solution (100X) | Life Technologies | 11140-050 | Chondrogenic media component (Conc.: 100 mM) |
rhBMP-2 | R&D | 355-BM-050 | Chondrogenic media component (Conc.:100ng/ml) |
Recombinant Hman TGF-beta3 | R&D | 243-B3-002 | Chondrogenic media component (Conc.:10ng/ml) |
KnockOut Serum Replacement | Life Technologies | 10828-028 | Chondrogenic media component (Conc.: 1 %) |
ITS+ Premix | BD | 354352 | Chondrogenic media component (Conc.: 1 %) |
Dexamethasone-Water Soluble | Sigma Aldrich | D2915-100MG | Chondrogenic media component (Conc.:10-7 M) |
GlutaMAX Supplement | Life Technologies | 35050-061 | Chondrogenic media component (Conc.: 1 %) |
Sodium pyruvate solution | Sigma Aldrich | S8636 | Chondrogenic media component (Conc.: 1 %) |
L-Proline | Sigma Aldrich | P5607-25G | Chondrogenic media component (40μg/ml) |