L’uso di un hyperlens è stato considerato come una tecnica di imaging ad alta super-risoluzione romanzo a causa di suoi vantaggi nella formazione immagine in tempo reale e la sua attuazione semplice con ottiche convenzionali. Qui, presentiamo un protocollo che descrive la fabbricazione e applicazioni di un hyperlens sferica di imaging.
L’uso di Super-risoluzione imaging per superare il limite di diffrazione di microscopia convenzionale ha attirato l’interesse dei ricercatori nella biologia e nella nanotecnologia. Anche se superlenses e microscopia a scansione a campo hanno migliorato la risoluzione della regione di campo vicino, far field imaging in tempo reale resta una sfida significativa. Recentemente, il hyperlens, che ingrandisce e converte le onde evanescenti in propagazione delle onde, è emerso come un nuovo approccio all’imaging di campo lontano. Qui, segnaliamo la realizzazione di un hyperlens sferica composto di argento (Ag) e strati sottili di titanio (TiO2) ossido alternati. A differenza di un convenzionale hyperlens cilindrici, il hyperlens sferica permette ingrandimento bidimensionale. Così, l’inserimento nella microscopia convenzionale è semplice. È proposto un nuovo sistema ottico integrato con il hyperlens, permettendo per un’immagine di sub-lunghezza d’onda per essere ottenuto nella regione di campo lontano in tempo reale. In questo studio, la fabbricazione e i metodi di installazione imaging sono spiegati in dettaglio. Questo lavoro descrive anche l’accessibilità e la possibilità dell’hyperlens, così come le applicazioni pratiche di formazione immagine in tempo reale in cellule viventi, che può portare a una rivoluzione nella biologia e nella nanotecnologia.
Un desiderio di osservare biomolecole in cellule viventi ha condotto all’invenzione del microscopio, e l’avvento della microscopia propagato la rivoluzione di vari campi, quali biologia, patologia e scienza dei materiali, negli ultimi secoli. Tuttavia, ulteriore avanzamento della ricerca è stata limitata dalla diffrazione, che limita la risoluzione dei microscopi convenzionali a circa metà della lunghezza d’onda1. Super-resolution imaging per superare il limite di diffrazione è stato, quindi, un’interessante area di ricerca negli ultimi decenni.
Come il limite di diffrazione è attribuito alla perdita delle onde evanescenti che contengono informazioni sugli oggetti di sub-lunghezza d’onda, i primi studi sono stati condotti per impedire che le onde evanescenti scomparendo o recuperarli2,3. Lo sforzo per superare il limite di diffrazione in primo luogo è stato segnalato con microscopia ottica a scansione, che raccoglie il campo evanescente nella prossimità vicina all’oggetto prima che sia dissipata2near field. Tuttavia, come la regione intera immagine di scansione e ricostruendolo richiede molto tempo, non può essere applicato a imaging in tempo reale. Anche se un altro approccio basato sulla “superlente,” che amplifica le onde evanescenti, fornisce la possibilità di formazione immagine in tempo reale, imaging di sub-lunghezza d’onda è in grado solo nella regione di campo vicino e non può raggiungere ben oltre gli oggetti4, 5 , 6 , 7.
Recentemente, il hyperlens è emerso come un nuovo approccio al tempo reale campo lontano optical imaging8,9,10,11,12. Il hyperlens, che è fatta di metamateriali iperbolico altamente anisotropo13, esibisce una dispersione piano iperbolica modo che supporta alta informazione territoriale con la stessa velocità di fase. Inoltre, a causa della legge di conservazione di quantità di moto, l’alta wavevector trasversale è gradualmente compresso come l’onda passa attraverso la geometria cilindrica. Queste informazioni ingrandite, pertanto, possono essere rilevate da un microscopio convenzionale della regione di campo lontano. Questo è di particolare importanza per la formazione immagine in tempo reale campo lontano, come non richiede alcuna ricostruzione di scansione o immagine punto per punto. Inoltre, la hyperlens può essere utilizzato per applicazioni diverse da formazione immagine, compreso nanolitografia. Luce che passa attraverso la hyperlens in direzione inversa sarà focalizzata su un’area sub-diffrazione dovuto la simmetria di inversione temporale14,15,16.
Qui, segnaliamo su un hyperlens sferica che ingrandisce bidimensionale informazioni alla frequenza visibile. A differenza dei convenzionale geometria cilindrica, il hyperlens sferica ingrandisce gli oggetti in due dimensioni laterali, facilitando le pratiche applicazioni di imaging. Il metodo di fabbricazione e installazione di imaging con la hyperlens sono presentati in dettaglio per la riproduzione di un hyperlens di alta qualità. Un oggetto di sub-lunghezza d’onda è incisa sul hyperlens per il bene di dimostrare il suo potere di super-risoluzione. È confermato che piccole caratteristiche di oggetti inscritti vengono ingranditi dalla hyperlens. Così, chiaramente risolti immagini sono ottenute nella regione di campo lontano in tempo reale. Questo nuovo tipo di hyperlens sferica, con la sua facilità di integrazione con microscopia convenzionale, offre la possibilità di pratiche applicazioni di imaging, che conduce all’alba di una nuova era in biologia e patologia generale nanoscienza.
La realizzazione di un hyperlens comprende tre fasi principali: definizione della geometria emisferica nel substrato quarzo attraverso un processo di bagnato-acquaforte, accatastamento il metallo e dielettrico multistrato utilizzando un sistema di evaporazione del fascio di elettroni e inscrivere il oggetto sul layer in Cr. Il passo più importante è il secondo, dal momento che esso può influire significativamente la qualità della hyperlens. Nel processo di deposizione di film sottili, ci sono due condizioni che richi…
The authors have nothing to disclose.
Questo lavoro è sostenuto finanziariamente dal programma Young Investigator (NRF-2015R1C1A1A02036464), programma Engineering Research Center (NRF-2015R1A5A1037668) e programma di frontiera globale (CAMM-2014M3A6B3063708), M.K., S.S., I.K. riconoscere il dottorato di ricerca globale Borse di studio (NRF NRF-2017H1A2A1043204, NRF-2017H1A2A1043322,-2016H1A2A1906519) attraverso la concessione di National Research Foundation di Corea (NRF) finanziato dal Ministero della scienza, ICT e futuro pianificazione (MSIP) del governo coreano.
Focused Ion Beam milling machine | FEI | Helios Nanolab G3 CX | |
E-beam evaporation system | Korea Vacuum Tech | KVE-E4000 | |
Scanning electron microscopy | Hitachi | SU6600 | |
Inverted microscopy | Zeiss | Axiovert 200 | |
Light source | EXCELITAS Technologies | X-Cite 110 LED | |
Band pass filter | Chroma | ET405/30M | |
Objective lens | Zeiss | Plan-Apochromat | NA=1.3, 100X |
CCD camera | Andor | Zyla 4.2 | |
Quartz wafer | CORNING | Fused Silica Corning 7980 | |
Buffered oxide etchant | J.T Baker TM | J.T.Baker 5175 | |
Photoresist | AZ electronic materials | GXR-601 PR | |
Chromium etchant | SIGMA-ALDRICH | 651826 | |
Aceton | J.T Baker TM | UN1090 | |
Isopropyl alcohol | J.T Baker TM | UN1219 | |
FEM simulation tool | COMSOL 5.1 Multiphysics |