Summary

小容积回收-灌注-浸没式室系统中维持的急性海马切片的突触可塑性记录

Published: January 01, 2018
doi:

Summary

本协议描述了在少量回收的缓冲液中的氧水平的稳定, 以及在淹没的急性海马切片中记录活动依赖性突触可塑性的方法学方面。

Abstract

尽管自1951年以来, 脑切片的实验已经开始使用, 但问题仍然存在, 这就降低了在执行场电位或胞内记录时对突触传输调制进行稳定和成功分析的可能性。这篇手稿描述的方法学方面, 可能有助于改善实验条件的维护急性脑切片和记录场兴奋性突触后电位在一个商业可用的淹没室与流出-carbogenation 单位。外流 carbogenation 有助于稳定氧气水平的实验, 依靠回收的小缓冲水库, 以提高成本效益的药物实验。此外, 该手稿还有代表性的实验, 考察不同的 carbogenation 模式和刺激范式对突触传递的活动依赖性突触可塑性的影响。

Introduction

在 1951年, 第一次报告的急性脑切片实验进行了1。在 1971年, 在成功的体外录音从梨皮层2,3和发现海马神经元是相互连接横向沿 septotemporal 轴海马4, 其中一个第一个体外海马神经元活动的记录实现了5。神经或 neurostructural 参数的相似性神经元在体内体外条件仍然是一些辩论的主题6, 但在 1975年, Schwartzkroin7表示, 基神经元的性质是保持在体外和高频刺激 (即,后背) 的传入在海马形成诱导一个长期的促进突触潜能8。神经元活动的电生理记录在体外极大地扩展了活动依赖性突触可塑性的细胞机制的研究910在1973年被极乐发现et al.11体内实验中用家兔。

研究神经元活动或信号通路的脑切片, 特别是在急性海马切片, 现在是一个标准的工具。然而, 令人惊讶的是,在试管中的实验还没有标准化, 这证明了在急性海马切片的制备和维持方面仍然存在着多种方法。里德et al.(1988)12回顾了在不同类型的切片室中维持急性脑切片的方法学挑战, 以及沐浴培养基、pH 值、温度和氧水平的选择。由于体外切片记录设置的 custom-made 元素, 这些参数在记录室中仍然难以控制。可以找到的出版物, 可能有助于克服一些方法上的挑战, 并描述了新类型的淹没切片室, 如间质 3D microperfusion 系统13, 一个室的层流和氧气增强提供14, 一个具有计算机温度控制的系统15, 以及一个多记录系统16。由于这些房间不易建造, 大多数科学家依赖于商业上可用的切片室。这些室可以安装在显微镜系统, 从而允许的电生理和荧光成像的结合17,18,19。由于这些腔室保持脑切片淹没在人工脑脊液 (aCSF), 高流速的缓冲液的解决方案需要保持, 增加了药物应用的费用。为此, 我们已经采用了一个循环再灌注系统与流出-carbogenation, 提供足够的稳定性, 以长期记录的现场电位在一个浸没的切片室使用相对较小的 aCSF 体积。此外, 我们总结了如何使用这个实验 carbogenation/灌注系统影响的结果, 活动相关的突触可塑性10和如何抑制真核伸长 factor-2 激酶 (eEF2K) 调节突触传输20

Protocol

这些动物是按照中国上海复旦大学脑科学研究所和医学神经生物学国家重点实验室的既定动物保育标准和程序进行维护的。 1. 溶液制备 注意: 请参见材料表。 准备切片缓冲区 (修改后的 Gey 的解决方案):92 毫米氯化钠, 2.5 毫米氯化钾, 1.25 毫米 NaH2PO4, 30 mm NaHCO3, 25 mm 葡萄糖, 20 mm HEPES, 3 mm Na+-丙酮酸, 10 mm MgSO4, 0.5 mm CaCl2…

Representative Results

在 “协议” 部分, 我们描述了由雄性 C57BL/6 小鼠和雄性大鼠 (5-8 周) 的海马形成 (图 1) 的腹侧和中间部分的急性海马切片的制备。半球在切片机平台上的位置有助于保持它们的稳定, 并消除琼脂或琼脂糖对稳定的需要。灌注系统本身是基于在高转速下运行的蠕动泵, 以提供所需的液体流速。因此, 在泵的标准管迅速老化造成了一个很大的问题, 我们克服了…

Discussion

虽然界面切片室表现出更强大的突触响应25,26,27,28, 淹没腔室为膜片钳记录和荧光提供了额外的便利成像.因此, 我们已经描述了几个方面的现场电位记录的急性海马切片使用商业浸没切片室, 可以很容易地扩展到成像的荧光探针在神经元17,18, <sup class=…

Divulgations

The authors have nothing to disclose.

Acknowledgements

. 进行、分析、设计了实验并写了手稿。D.X. 和中共协助图准备和进行实验。这项工作得到了自然科学基金 (31320103906) 和111项目 (B16013) 对肺结核

Materials

Reagents required
NaCl Sinopharm Chemical Reagent, China 10019318
KCl Sinopharm Chemical Reagent, China 10016318
KH2PO4 Sinopharm Chemical Reagent, China 10017618
MgCl2·6H2O Sinopharm Chemical Reagent, China 10012818
CaCl2 Sinopharm Chemical Reagent, China 10005861
NaHCO3 Sinopharm Chemical Reagent, China 10018960
Glucose Sinopharm Chemical Reagent, China 10010518
NaH2PO4 Sinopharm Chemical Reagent, China 20040718
HEPES Sigma H3375
Sodium pyruvate Sigma A4043
MgSO4 Sinopharm Chemical Reagent, China 20025118
NaOH Sinopharm Chemical Reagent, China 10019718
Tools and materials for dissection
Decapitators Harvard apparatus 55-0012 for rat decapitation
Bandage Scissors SCHREIBER 12-4227 for mouse decapitation
double-edge blade Flying Eagle, China 74-C
IRIS Scissors RWD, China S12003-09
Bone Rongeurs RWD, China S22002-14
Spoon Hammacher  HSN 152-13
dental cement spatula Hammacher  HSN 016-15
dental double end excavator Blacksmith Surgical, USA BS-415-017
Vibrating Microtome Leica, Germany VT1200S
surgical blade  RWD, China S31023-02
surgical holder RWD, China S32007-14
Electrophysiology equipment and materials
Vertical Pipette Puller Narishige, Japan PC-10
Vibration isolation table Meirits, Japan ADZ-A0806
submerged type recording chamber Warner Instruments RC-26GLP
thermostatic water bath Zhongcheng Yiqi,China HH-1
4 Axis Micromanipulator Sutter, USA MP-285, MP-225
Platinum Wire World Precision Instruments PTP406
Amplifier Molecular Devices, USA Multiclamp 700B
Data Acquisition System Molecular Devices, USA Digidata 1440A
Anaysis software Molecular Devices, USA Clampex 10.2
Fluorescence Microscope Nikon, Japan FN1
LED light source Lumen Dynamics Group, Canada X-cite 120LED
micropipettes Harvard apparatus GC150TF extracelluar recording
borosilicate micropipettes Sutter, USA BF150-86 patch clamp
tungsten electrode A-M Systems, USA 575500
peristaltic pump Longer, China BT00-300T
tubes for peristaltic pump ISMATEC, Wertheim, Germany SC0309 1x inflow, ID: 1.02mm
tubes for peristaltic pump ISMATEC, Wertheim, Germany SC0319 2x tubes for outflow, ID: 2.79 mm
CCD camera PCO, Germany pco.edge sCMOS
lens cleaning paper Kodak
50 ml conical centrifuge tube Thermo scientific 339652
Prechamber Warner Instruments BSC-PC
Inline heater Warner Instruments SF-28
Temperature Controller Warner Instruments TC-324B

References

  1. McIlwain, H. Metabolic response in vitro to electrical stimulation of sections of mammalian brain. Biochem J. 48 (4), (1951).
  2. McIlwain, H., Richards, C. D., Somerville, A. R. Responses in vitro from the piriform cortex of the rat, and their susceptibility to centrally-acting drugs. J Neurochem. 14 (9), 937-938 (1967).
  3. Yamamoto, C., McIlwain, H. Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem. 13 (12), 1333-1343 (1966).
  4. Andersen, P., Bliss, T. V., Lomo, T., Olsen, L. I., Skrede, K. K. Lamellar organization of hippocampal excitatory pathways. Acta Physiol Scand. 76 (1), 4-5 (1969).
  5. Skrede, K. K., Westgaard, R. H. The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res. 35 (2), 589-593 (1971).
  6. Kirov, S. A., Sorra, K. E., Harris, K. M. Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci. 19 (8), 2876-2886 (1999).
  7. Schwartzkroin, P. A. Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res. 85 (3), 423-436 (1975).
  8. Schwartzkroin, P. A., Wester, K. Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice. Brain Res. 89 (1), 107-119 (1975).
  9. Reymann, K. G., Frey, J. U. The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharm. 52 (1), 24-40 (2007).
  10. Bliss, T. V., Collingridge, G. L., Morris, R. G. Synaptic plasticity in health and disease: introduction and overview. Philos Trans R Soc Lond B Biol Sci. 369 (1633), 20130129 (2014).
  11. Bliss, T. V., Gardner-Medwin, A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 232 (2), 357-374 (1973).
  12. Reid, K. H., Edmonds, H. L., Schurr, A., Tseng, M. T., West, C. A. Pitfalls in the Use of Brain-Slices. Prog Neurobiol. 31 (1), 1-18 (1988).
  13. Rambani, K., Vukasinovic, J., Glezer, A., Potter, S. M. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. J Neurosci Methods. 180 (2), 243-254 (2009).
  14. Hajos, N., et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci. 29 (2), 319-327 (2009).
  15. Redondo, R. L., et al. Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci. 30 (14), 4981-4989 (2010).
  16. Stopps, M., et al. Design and application of a novel brain slice system that permits independent electrophysiological recordings from multiple slices. J Neurosci Methods. 132 (2), 137-148 (2004).
  17. Behnisch, T., Matsushita, S., Knopfel, T. Imaging of gene expression during long-term potentiation. Neuroreport. 15 (13), 2039-2043 (2004).
  18. Karpova, A., et al. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 152 (5), 1119-1133 (2013).
  19. Karpova, A., Mikhaylova, M., Thomas, U., Knopfel, T., Behnisch, T. Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J Neurosci. 26 (18), 4949-4955 (2006).
  20. Weng, W., Chen, Y., Wang, M., Zhuang, Y., Behnisch, T. Potentiation of Schaffer-Collateral CA1 Synaptic Transmission by eEF2K and p38 MAPK Mediated Mechanisms. Front Cell Neurosci. 10 (247), (2016).
  21. Meduna, L. J., Jackman, A. I. Carbon dioxide inhalation therapy. Res Publ Assoc Res Nerv Ment Dis. 31, 280-286 (1953).
  22. Edwards, F. A., Konnerth, A., Sakmann, B., Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 414 (5), 600-612 (1989).
  23. Mathis, D. M., Furman, J. L., Norris, C. M. Preparation of acute hippocampal slices from rats and transgenic mice for the study of synaptic alterations during aging and amyloid pathology. J Vis Exp. (49), (2011).
  24. Yuanxiang, P., Bera, S., Karpova, A., Kreutz, M. R., Mikhaylova, M. Isolation of CA1 nuclear enriched fractions from hippocampal slices to study activity-dependent nuclear import of synapto-nuclear messenger proteins. J Vis Exp. (90), e51310 (2014).
  25. Leutgeb, J. K., Frey, J. U., Behnisch, T. LTP in cultured hippocampal-entorhinal cortex slices from young adult (P25-30) rats. J Neurosci Meth. 130 (1), 19-32 (2003).
  26. Kloosterman, F., Peloquin, P., Leung, L. S. Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation. J Neurophysiol. 86 (5), 2435-2444 (2001).
  27. Thiemann, W., Malisch, R., Reymann, K. G. A new microcirculation chamber for inexpensive long-term investigations of nervous tissue in vitro. Brain Res Bull. 17 (1), 1-4 (1986).
  28. Shetty, M. S., et al. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents. J Vis Exp. (103), (2015).
  29. Du, H., Lin, J., Zuercher, C. Higher efficiency of CO2 injection into seawater by a venturi than a conventional diffuser system. Bioresour Technol. 107, 131-134 (2012).
  30. Weinman, J., Mahler, J. An Analysis of Electrical Properties of Metal Electrodes. Med Electron Biol Eng. 2, 299-310 (1964).
  31. Fanselow, M. S., Dong, H. W. Are the dorsal and ventral hippocampus functionally distinct structures. Neuron. 65 (1), 7-19 (2010).
  32. Wang, M., et al. Translation of BDNF-gene transcripts with short 3′ UTR in hippocampal CA1 neurons improves memory formation and enhances synaptic plasticity-relevant signaling pathways. Neurobiol Learn Mem. , (2016).

Play Video

Citer Cet Article
Weng, W., Li, D., Peng, C., Behnisch, T. Recording Synaptic Plasticity in Acute Hippocampal Slices Maintained in a Small-volume Recycling-, Perfusion-, and Submersion-type Chamber System. J. Vis. Exp. (131), e55936, doi:10.3791/55936 (2018).

View Video