Summary

地下火山 3D 地震成像数据处理方法: 塔里木溢流玄武岩中的应用

Published: August 07, 2017
doi:

Summary

三维 (3D) 反射地震学是成像地下火山的强大方法。通过使用从塔里木盆地的工业三维地震数据,我们说明如何从地震数据的多维数据集提取门槛和地下火山的管道。

Abstract

管道系统的结构与形态可以提供关键信息的爆发率和风格的玄武岩熔岩。最有力的方式来研究地下地质机构是使用工业 3D 反射地震成像。然而,图像地下火山的战略是非常不同于石油和天然气储层。在此研究中,我们处理地震数据多维数据集从塔里木盆地,中国北方,来说明如何可视化窗台通过不透明度渲染技术以及如何通过时间切片图像的管道。在第一种情况下,我们分离探针由地震层位标记之间窗台联系人和装箱地层,应用不透明度渲染技术来提取门槛从地震的多维数据集。由此产生的详细的窗台形态显示流动方向是从穹顶中心到边缘。在第二次地震多维数据集,我们使用时间切片图像的管道,对应于标记内包围的岩石的不连续性。时间片在不同深度获得一套表明塔里木溢流玄武岩喷发从中央的火山喷发,美联储通过单独的管样管道。

Introduction

大多数工业沉积盆地地震成像项目旨在探讨油气藏。近年来,油气勘探已扩展到包含大量的火成岩,因为许多火山盆地有可观的油、 气藏的盆地。然而,由于火山盆地火成岩的接口,地震数据处理提出了一系列的挑战各种入侵,如减少的能量传输、 固有衰减、 干扰效应、 折射和散射1所致。因此,油田公司正在努力减少这类”负面影响”地震成像234

火成岩体沉积盆地内的方便地识别所包围的岩石156大的声阻抗对比两个二维或三维地震反射成像。这种方法可以提供纵向和横向结构的火山水暖系统78910111213的壮观画面。然而,成像地下火山的策略是非常不同于石油和天然气勘探81415。这限制了工业中的地震资料研究地下火山,除了几个成功的案例101516使用。在本文中,我们报告地震数据处理中,这定制的地下火山解释的详细的的过程。我们处理两个地震的多维数据集,TZ47 和 YM2 (图 1),以显示如何可视化隐伏火成岩体在塔里木洪水玄武岩17

Protocol

NOTE: The data processing procedures include: synthetic seismogram calculation, synthetic-real seismic trace correlation, and geo-body extraction. Below are the step-by-step details of each procedure. 1. Calculation of Synthetic Seismogram Calculate the acoustic impedance at each interval of the down-well logging curve. NOTE: Acoustic impedance is the product of 'seismic wave velocities' and 'density' (ρ*ν)). The data are often averaged to sampling …

Representative Results

我们演示技术通过将它们应用到 2 种类型的火成岩体、 水平梁和垂直火山管道上文所述的用途。采用不透明的渲染技术,进行萃取的窗台,利用切片技术进行解释的火山通道。 提取的窗台 工业钻井井有相交许多基石在英买 2 地区从塔里木盆地塔北17,但窗台的三维…

Discussion

在这里我们展示 2 种方法说明埋的玄武质火山; 水暖系统的结构与形态一个是不透明度渲染,其他时间是切片。

不透明度渲染方法是适合有连续和包围地层水平界面附近的土力工程处机构。使用此方法,可以提取三维形态的岩浆裂片。通常情况下,流向应沿长轴的岩浆裂片。它也是重要的表面的视野有高反射系数 (R0)。如果R0在界面太低,口译员?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者承认国家自然科学基金委员会对 WT (格兰特号 41272368) 及 QKX (格兰特号 41630205) 的金融支持。

Materials

The Petrel E&P software platform Schlumberger software version:2014

References

  1. Smallwood, J. R., Maresh, J. The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic from the Faroe-Shetland area. Geol. Soc. London Spec. Publ. 197 (1), 271-306 (2002).
  2. Millett, J. M., Hole, M. J., Jolley, D. W., Schofield, N., Campbell, E. Frontier exploration and the North Atlantic Igneous Province: new insights from a 2.6 km offshore volcanic sequence in the NE Faroe-Shetland Basin. J. Geol. Soc. 173 (2), 320-336 (2016).
  3. Lee, G. H., Kwon, Y. I., Yoon, C. S., Kim, H. J., Yoo, H. S. Igneous complexes in the eastern Northern South Yellow Sea Basin and their implications for hydrocarbon systems. Mar. Pet. Geol. 23 (6), 631-645 (2006).
  4. Rateau, R., Schofield, N., Smith, M. The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Pet. Geosci. 19 (3), 259-272 (2013).
  5. Magee, C., et al. Lateral magma flow in mafic sill complexes. Geosphere. 12 (3), 809-841 (2016).
  6. Magee, C., Jackson, C. A. L., Schofield, N. Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Res. 26 (1), 85-105 (2014).
  7. Symonds, P., Planke, S., Frey, O., Skogseid, J. Volcanic evolution of the Western Australian continental margin and its implications for basin development. The sedimentary basins of Western Australia. 2, 33-54 (1998).
  8. Thomson, K., Hutton, D. Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. BVol. 66 (4), 364-375 (2004).
  9. Planke, S., Rasmussen, T., Rey, S., Myklebust, R., Doré, A. G., Vining, B. A. . Petroleum Geology: North-West Europe and Global Perspectives-Proceedings of the 6th Petroleum Geology Conference. 6, 833-844 (2005).
  10. Magee, C., Hunt Stewart, ., E, C. A. L., Jackson, Volcano growth mechanisms and the role of sub-volcanic intrusions: Insights from 2D seismic reflection data. Earth Planet. Sci. Lett. 373, 41-53 (2013).
  11. Schofield, N. J., Brown, D. J., Magee, C., Stevenson, C. T. Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. J. Geol. Soc. 169 (2), 127-141 (2012).
  12. Wang, L., Tian, W., Shi, Y. M., Guan, P. Volcanic structure of the Tarim flood basalt revealed through 3-D seismological imaging. Sci. Bull. 60 (16), 1448-1456 (2015).
  13. Sun, Q., et al. Neogene igneous intrusions in the northern South China Sea: Evidence from high-resolution three dimensional seismic data. Mar. Pet. Geol. 54, 83-95 (2014).
  14. Schofield, N., et al. Seismic imaging of ‘broken bridges’: linking seismic to outcrop-scale investigations of intrusive magma lobes. J. Geol. Soc. 169 (4), 421-426 (2012).
  15. Thomson, K. Volcanic features of the North Rockall Trough: application of visualisation techniques on 3D seismic reflection data. BVol. 67 (2), 116-128 (2005).
  16. Jackson, C. A. L. Seismic reflection imaging and controls on the preservation of ancient sill-fed magmatic vents. J. Geol. Soc. 169 (5), 503-506 (2012).
  17. Tian, W., et al. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. CoMP. 160 (3), 407-425 (2010).
  18. Chen, M. -. M., et al. Peridotite and pyroxenite xenoliths from Tarim, NW China: Evidences for melt depletion and mantle refertilization in the mantle source region of the Tarim flood basalt. Lithos. 204, 97-111 (2014).
  19. Magee, C., Maharaj, S. M., Wrona, T., Jackson, C. A. L. Controls on the expression of igneous intrusions in seismic reflection data. Geosphere. 11 (4), 1024-1041 (2015).
  20. Bahorich, M., Farmer, S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge. 14 (10), 1053-1058 (1995).

Play Video

Citer Cet Article
Wang, L., Tian, W., Shi, Y. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt. J. Vis. Exp. (126), e55930, doi:10.3791/55930 (2017).

View Video