La composition protéique de la valvule mitrale humaine est encore partiellement inconnue, car son analyse est compliquée par une faible cellularité et donc par une faible biosynthèse des protéines. Ce travail fournit un protocole pour extraire efficacement les protéines pour l'analyse du protéome de la valvule mitrale.
L'analyse du protéome cellulaire peut aider à élucider les mécanismes moléculaires sous-jacents aux maladies dues au développement de technologies qui permettent l'identification et la quantification à grande échelle des protéines présentes dans les systèmes biologiques complexes. Les connaissances acquises à partir d'une approche protéomique peuvent conduire à une Une meilleure compréhension des mécanismes pathogènes sous-jacents aux maladies, permettant d'identifier de nouveaux marqueurs de diagnostic et de pronostic et, espérons-le, des cibles thérapeutiques. Cependant, la valvule mitrale cardiaque représente un échantillon très difficile pour l'analyse protéomique en raison de la faible cellularité dans le protéoglycane et la matrice extracellulaire enrichie en collagène. Cela rend difficile l'extraction de protéines pour une analyse protéomique globale. Ce travail décrit un protocole qui est compatible avec l'analyse subséquente des protéines, telles que la protéomique quantitative et l'immunoblot. Cela peut permettre la corrélation des données concernantG expression de protéines avec des données sur l'expression quantitative de l'ARNm et l'analyse immunohistochimique non quantitative. En effet, ces approches, lorsqu'elles sont réalisées ensemble, conduiront à une compréhension plus complète des mécanismes moléculaires sous-jacents aux maladies, de l'ARNm à la modification de la protéine post-traductionnelle. Ainsi, cette méthode peut être pertinente pour les chercheurs intéressés par l'étude de la physiopathologie valvulaire cardiaque.
Des preuves récentes ont modifié la compréhension des rôles des nombreux mécanismes de régulation qui se produisent après la synthèse de l'ARNm. En effet, les processus translationnels, post-transcriptionnels et protéolytiques peuvent réguler l'abondance et la fonction des protéines. Le dogme – qui indique que les concentrations d'ARNm sont des proxies de celles des protéines correspondantes, en supposant que les niveaux de transcription sont le principal déterminant de l'abondance des protéines – ont été partiellement révisés. En effet, les niveaux de transcription ne prédisent partiellement que l'abondance des protéines, ce qui suggère que les événements post-transcriptionnels Se produisent pour réguler les protéines dans les cellules 1 , 2 .
En outre, les protéines déterminent finalement la fonction de la cellule et dictent donc son phénotype, qui peut subir des changements dynamiques en réponse aux facteurs autocrins, paracrins et endocriniens; Médiateurs transmis par le sang; température; traitement médical; Et la maladie se développeMent. Ainsi, une analyse d'expression axée sur le niveau de protéine est utile pour caractériser le protéome et pour démêler les changements critiques qui lui apparaissent dans le cadre de la pathogenèse de la maladie 3 .
Par conséquent, les opportunités que la protéomique présente pour clarifier la santé et les maladies sont formidables, malgré les défis technologiques existants. Les domaines de recherche particulièrement prometteurs auxquels la protéomique peut contribuer: l'identification de l'expression protéique altérée à n'importe quel niveau ( c.-à-d. Cellules entières ou tissus, compartiments subcellulaires et fluides biologiques); L'identification, la vérification et la validation de nouveaux biomarqueurs utiles pour le diagnostic et le pronostic de la maladie; Et, espérons-le, l'identification de nouvelles cibles protéiques qui peuvent être utilisées à des fins thérapeutiques, ainsi que pour l'évaluation de l'efficacité et de la toxicité du médicament 4 .
Capture de la complexité deLe protéome représente un défi technologique. Les outils protéomiques actuels offrent l'opportunité d'effectuer une analyse à grande échelle et à haut débit pour l'identification, la quantification et la validation des niveaux de protéines altérés. En outre, l'introduction de techniques de fractionnement et d'enrichissement, visant à éviter les interférences causées par les protéines les plus abondantes, a également amélioré l'identification des protéines en incluant les protéines les moins abondantes. Enfin, la protéomique a été complétée par l'analyse des modifications post-traductionnelles, qui apparaissent progressivement comme des modulateurs importants de la fonction protéique.
Cependant, la préparation des échantillons et la récupération des protéines dans les échantillons biologiques en cours d'analyse restent les étapes limitantes du flux de travail protéomique et augmentent le potentiel d'écueils possibles 5 . En effet, dans la plupart des techniques de biologie moléculaire qui doivent être optimisées, les premières étapes sont des tissus homogénéisésLa lyse ionique et cellulaire, en particulier lors de l'analyse de protéines à faible abondance pour lesquelles des méthodes d'amplification n'existent pas. En outre, la nature chimique des protéines peut influencer leur propre récupération. Par exemple, l'analyse des protéines hautement hydrophobes est très difficile car elles se précipitent facilement pendant la focalisation isoélectrique, tandis que les protéines trans-membranaires sont presque insolubles (revues dans la référence 5). En outre, la variabilité de la composition tissulaire crée un obstacle important au développement d'une méthode d'extraction universelle. Enfin, étant donné que la quasi-totalité des spécimens cliniques ont une quantité limitée, il est essentiel de permettre la préparation des protéines avec une récupération maximale et une reproductibilité à partir de quantités minimales d'échantillon 6 .
Ce travail décrit un protocole optimisé pour l'extraction de protéines à partir de la valvule mitrale cardiaque humaine normale, ce qui représente un échantillon très difficile pour l'analyse protéomique. La valvule mitrale normale est une compStructure lex située entre l'oreillette gauche et le ventricule gauche du cœur ( figure 1 ). Il joue un rôle important dans le contrôle du flux sanguin de l'oreillette au ventricule, en évitant le reflux et en assurant le bon niveau d'apport en oxygène à l'ensemble du corps, en maintenant un débit cardiaque adéquat. Cependant, il est souvent considéré comme un tissu «inactif», avec une faible cellularité et peu de composants, principalement dans la matrice extracellulaire. C'est parce que, dans des conditions normales, les cellules interstitielles valvulaires résidentes (VIC) présentent un phénotype quiescent avec un taux de biosynthèse faible en protéines 7 .
Cependant, il a été démontré que, dans un état pathologique, le nombre de VIC dans le spongiosa augmente et que leur synthèse protéique est activée, ainsi que d'autres changements fonctionnels et phénotypiques 8 . Par conséquent, il n'est pas surprenant que les données minimales disponibles dansLa littérature se concentre sur l'analyse des valves mitrales pathologiques 9 , 10 , dans lesquelles le nombre accru de VIC activés pourrait expliquer le nombre relativement élevé de protéines identifiées.
En conclusion, le présent protocole peut servir à développer la compréhension des mécanismes pathogènes responsables des maladies de la valvule mitrale par l'étude des composants des protéines valvulaires mitrales. En effet, une meilleure compréhension des processus pathologiques sous-jacents pourrait aider à améliorer la gestion clinique des maladies des valvules, dont les indications actuelles d'intervention sont principalement fondées sur des considérations hémodynamiques.
Une étape cruciale de ce protocole est l'utilisation d'azote liquide pour congeler l'échantillon et refroidir le système de broyage. L'utilisation d'azote liquide empêche la dégradation biologique et permet une pulvérisation efficace, mais elle nécessite une formation spécifique pour une manipulation sûre.
Dans ce protocole, il existe un système de broyage pour le meulage des échantillons car les petits échantillons sont difficiles à récupérer à partir du …
The authors have nothing to disclose.
Le ministère italien de la Santé a appuyé cette étude (RC 2013-BIO 15). Nous remercions Barbara Micheli pour son excellente assistance technique.
Saline solution | 0.9 % NaCl | ||
Eurocollins A | SALF | 30874046 | Balanced organ's transport medium. Combine 400 mL of Eurocollins A with 100 mL Eurocollins B to obtain balanced medium Eurocollins |
Eurocollins B | SALF | 30874022 | Balanced organ's transport medium. Combine 400 mL of Eurocollins A with 100 mL Eurocollins B to obtain balanced medium Eurocollins |
Wisconsin | Bridge life | RM/N 4081 | Balanced organ's transport medium |
Biohazard vertical flow air | Burdinola | Class A GMP classification | |
Dewar Flask | Thermo Scientific | Nalgene 4150-1000 | |
Cryogrinder system | OPS diagnostics | CG 08-01 | Grinder system containing mortars, pestles and screwdriver |
Stainless steel forceps | |||
Stainless steel spatula | |||
Disposable sterile scalpel | Medisafe | MS-10 | |
Stainless steel scissors | Autoclavable | ||
Stainless steel picks | Autoclavable | ||
Disposable sterile drap | Mon&Tex | 3.307.08 | |
Sterilizing solution with isopropyl alcohol | 70% isopropyl alcohol | ||
Sterilizing solution with hydrogen peroxide | 6% hydrogen peroxide | ||
Micropipette, 1 mL, with tips | |||
15 mL centrifuge tubes | VWR international | 9278 | |
1.7 mL centrifuge tubes | VWR international | PIER90410 | |
Urea buffer | 8 M urea, 2 M thiourea, 4 % w/v CHAPS, 20 mM Trizma, 55 mM Dithiotreitol | ||
Urea | Sigma aldrich | U6504-1KG | To be used for Urea buffer |
Thiourea | Sigma aldrich | T8656 | To be used for Urea buffer |
CHAPS | Sigma aldrich | C3023-5GR | To be used for Urea buffer |
Dithiotreitol | Sigma aldrich | D0632-5G | To be used for Urea buffer |
Syringe 50 mL | PIC | To be used to filter Urea buffer | |
0.22 µm filter | Millipore | SLGP033RB | To be used to filter Urea buffer |
PFTE Pestle, 2 mL | Kartell | 6302 | Part of Potter-Elvehjem homogenizer |
Borosilicate glass mortar | Kartell | 6102 | Part of Potter-Elvehjem homogenizer |
Stirrer | VELP scientifica | Stirrer DLH | To be used for homogenization by Potter-Elvehjem |
Bradford Protein assay | Bio-Rad laboratories | 5000006 | |
Tube rotator | Pbi International | F205 | |
Liquid nitrogen | |||
Aluminum foil | |||
Ice | |||
Polystyrene box | |||
Dry ice | |||
Centrifuge | For centrifugation of 1.7 mL centrifuge tubes at 13,000 x g | ||
Freezer -80°C | |||
Precision balance | |||
Autoclave | For sterilization | ||
Cryogenic gloves for liquid nitrogen | |||
Gloves | |||
Professional forced ventilation and natural air convection oven | For sterilization | ||
Protease inhibitor cocktail | Sigma aldrich | P8340-5ML | 100X solution |
ProteoExtract Protein Precipitation Kit | Calbiochem | 539180 | |
RapiGest | Waters | 186001861 | |
Cytoscape | www.cytoscape.org | version 2.7 | Software platform for Gene Ontology analysis |
BiNGO | http://apps.cytoscape.org/apps/bingo | version 3.0.3 | Plugin for Gene ontology analysis |
AlphaB Crystallin/CRYAB Antibody | Novus Biologicals | NBP1-97494 | Mouse monoclonal antibody against CryAB |
Septin-11 Antibody | Novus Biologicals | NBP1-83824 | Rabbit polyclonal antibody against septin-11 |
FHL1 Antibody | Novus Biologicals | NBP-188745 | Rabbit polyclonal antibody against FHL-1 |
Dermatopontin Antibody | Novus Biologicals | NB110-68135 | Rabbit polyclonal antibody against dermatopontin |
Goat Anti mouse IgG HRP | Sigma aldrich | A4416-0.5ML | Secondary antibody for immunoblotting |
Goat Anti rabbit IgG HRP | Bio-Rad laboratories | 170-5046 | Secondary antibody for immunoblotting |