Summary

分化软骨细胞与外周血源性人诱导多能干细胞

Published: July 18, 2017
doi:

Summary

我们提出了一种通过诱导多能干细胞(iPSCs)从人外周血(PB)产生软骨形态谱的方案,使用无积分法,其包括胚状体(EB)形成,成纤维细胞扩增和软骨形成诱导。

Abstract

在本研究中,我们使用外周血细胞(PBC)作为种子细胞,通过诱导多能干细胞(iPSCs)以无积分方法产生软骨细胞。在胚状体(EB)形成和成纤维细胞扩增后,在无血清和无异种病毒条件下诱导iPSC进行软骨形成分化21天。在软骨细胞诱导后,通过形态学,免疫组织化学和生物化学分析以及软骨形成分化标志物的定量实时PCR检测来评价细胞的表型。软骨细胞团块显示阳性阿an蓝和甲苯胺蓝染色。胶原蛋白II和X染色的免疫组化也是阳性的。硫酸化糖胺聚糖(sGAG)含量和软骨形成分化标记COLLAGEN 2COL2 ), COLLAGEN 10COL10 ), SOX9AGGRECAN在chond中显着上调与hiPSCs和成纤维细胞相比,生殖球粒。这些结果表明,PBCs可用作种子细胞以产生用于软骨修复的iPSC,其是患者特异性且具有成本效益的。

Introduction

软骨组织的自我修复和再生能力非常差。使用各种手术干预和生物处理来恢复软骨和关节功能,结果令人不满。干细胞技术的最新发展可能会改变整个软骨修复领域1 。已经研究了各种干细胞作为种子细胞,但人诱导的多能干细胞(hiPSC)似乎是最有希望的选择,因为它们可以提供许多类型的患者特异性细胞而不引起排斥反应2 。此外,他们可以克服成人细胞的增殖性有限,维持自我更新和多能力。此外,基因靶向可用于改变基因型以获得特定类型的软骨细胞。

成纤维细胞已被广泛用于产生iPSC,因为它们的重编程潜力也得到了很好的研究。然而,还有一些必须克服的局限性,例如患者的疼痛活检和成纤维细胞的体外扩增的需要,这可能导致基因突变3 。最近,PBC被发现有利于重编程4 ;此外,它们被普遍利用并且被大量储存。它们可能会将研究重点从皮肤重定向。然而,据我们所知,关于PBC重新编程,随后分化成软骨细胞的报道很少。

在本研究中,我们将PBCs作为替代来源,通过将其重新编程到iPSC中,然后通过沉淀培养系统将iPSC分化成软骨细胞系,以模拟软骨细胞形成。

Protocol

从的PBC人iPS细胞的产生,该协议可以在我们先前的研究5中找到。该研究由我们机构的机构审查委员会批准。 胚胎体(EB)形成制备50毫升的hiPSC培养基:补充有15%敲除血清置换(KSR),5%胎牛血清(FBS),1×非必需氨基酸,55μM2-巯基乙醇,2mM L的Knockout Dulbecco's Modified Eagle培养基谷氨酰胺和8ng / mL碱性成纤维细胞生长因子(bFGF)。 制备50 mL …

Representative Results

hiPSCs的软骨形成分化: 使用EB形成培养基和基础培养基将hiPSC分化为间充质谱系。使用多步培养方法( 图1 )。首先,通过EB形成自发分化hiPSCs 10天(D10; 图2A )。其次,细胞从EBs中延续10天(D10 + 10)。在这两个步骤中,iPSCs逐渐失去原始形态并获得纺锤形形态( 图2B</…

Discussion

在这里,我们提供了通过iPSC从PBCs产生软骨细胞的方案。因为PBC在临床领域更常见并被广泛使用,所以它们被认为是重新编程的潜在替代方案。在本研究中,利用附加型载体(EV)将PBC重编程为iPSC,按照Zhang 等人建立的方法11 。这个免费的集成的方法不涉及整合型病毒相关的遗传毒性,这被认为是在临床领域12,13广阔的效果。?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者希望感谢张晓斌的质粒。我们也感谢王绍荣,钱前飞在实验过程中的帮助。本研究得到了国家自然科学基金(No.81101346,81271963,81100331),北京215高级人才项目(No.2014-3-025)和北京朝阳医院基金(No CYXX-2017-01)和中国科学院青年创新促进会(YL)。

Materials

Knockout DMEM Invitrogen 10829018 Basal medium used for hiPSC culture and EB formation medium
Knockout Serum Replacement (KSR) Invitrogen 10828028 A more defined, FBS-free medium supplement used for hiPSC culture and EB formation medium
Fetal bovine serum (FBS) Hyclone sh30070.03 Used for hiPSC culture and EB formation medium,offers excellent value for cell culture
Nonessential amino acids Chemicon TMS-001-C Used as a growth supplement in all the cell culture medium, to increase cell growth and viability
L-glutamine Invitrogen 35050061 An amino acid required for cell culture
Basic fibroblast growth factor (bFGF) Peprotech 100-18B A cytokine used for sustaining the pluripotency and self-renewal of hiPSCs
Dispase Invitrogen 17105041 Used for hiPSC dissociation for subculture
DMEM Gibco C11960 Basal medium used for MSC culture medium
0.1% gelatin Millipore ES-006-B Used for cell attachment onto the dishes
0.25% trypsin/EDTA Gibco 25200072 Used for cell dissociation
DPBS Gibco 14190250 A balanced salt solution used for cell wash or reagent preparing
β-mercaptoethanol invitrogen 21985023 Used as a growth supplement in all the cell culture medium.
ITS invitrogen 41400045 Insulin, Transferrin, Selenium Solution.Used for chondrogenic differentiation.
Ascorbic acid Sigma 4403 Known as vitamin C. It helps in active growth and has antioxidant property.
Sodium pyruvate Gibco 11360070 Added to cell culture medium as an energy source in addition to glucose.
Transforming growth factor-beta 1 Peprotech AF-100-21C A cytokine that regulate cell proliferation, growth and chondrogenic differentiation.
Rabbit polyclonal antibodies against Collagen II Abcam ab34712 This antibody reacts with Type II collagens,which is specific for cartilaginous tissues.
Mouse monoclonal antibodies to Collagen X Abcam ab49945 This antibody reacts with Type X collagen,which is a product of hyperthrophic chondrotocytes.
Permount Fisher Scientific SP15-100 For mounting and long-term storage of slides
Toluidine blue Sigma 89640 Used for proteoglycans detection.
Alcian blue Amresco #0298 Used for glucosaminoglycans detection.
Papain Sigma P4762-25MG Used to digest chondrogenic pellets.
Dimethylmethylene blue Sigma 341088-1G Used to quantitate glycosaminoglyans
Chondroitin sulfate sodium salt from shark cartilage Sigma C4384-250MG Used to draw the standard curve for sGAG content measurement.
Qubit dsDNA HS assay kit Invitrogen Q32851 (100) Used to determine DNA content
TRIzol Invitrogen 15596018 Used for RNA isolation from cells
Reverse Transcriptase System Promega A3500 Used to convert RNA into cDNA
SYBR FAST qPCR kit Master Mix Kapa KK4601 Used for Real-time PCR

References

  1. Diekman, B. O., et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA. 109 (47), 19172-19177 (2012).
  2. Park, I. H., et al. Disease-specific induced pluripotent stem cells. Cell. 134 (5), 877-886 (2008).
  3. Loh, Y. H., et al. Generation of induced pluripotent stem cells from human blood. Blood. 113 (22), 5476-5479 (2009).
  4. Zhang, X. B. Cellular reprogramming of human peripheral blood cells. Genomics Proteomics Bioinformatics. 11 (5), 264-274 (2013).
  5. Li, Y., et al. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther. 7 (31), (2016).
  6. Canene-Adams, K. Preparation of formalin-fixed paraffin-embedded tissue for immunohistochemistry. Methods Enzymol. 533, 225-233 (2013).
  7. Solchaga, L. A., Penick, K. J., Welter, J. F. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol Biol. 698, 253-278 (2011).
  8. Oldershaw, R. A., et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol. 28 (11), 1187-1194 (2010).
  9. Monje, L., Varayoud, J., Luque, E. H., Ramos, J. G. Neonatal exposure to bisphenol A modifies the abundance of estrogen receptor alpha transcripts with alternative 5′-untranslated regions in the female rat preoptic area. J Endocrinol. 194 (1), 201-212 (2007).
  10. Teramura, T., et al. Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cell Reprogram. 12 (3), 249-261 (2010).
  11. Su, R. J., et al. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors. PLoS One. 8 (5), e64496 (2013).
  12. Carey, B. W., et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell. 9 (6), 588-598 (2011).
  13. Okita, K., et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 31 (3), 458-466 (2013).
  14. Staerk, J., et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 7 (1), 20-24 (2010).
  15. Qu, C., et al. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol. 45 (8), 1802-1812 (2013).
  16. Guzzo, R. M., Gibson, J., Xu, R. H., Lee, F. Y., Drissi, H. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem. 114 (2), 480-490 (2013).
  17. Koyama, N., et al. Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells Dev. 22 (1), 102-113 (2013).
  18. Liu, X., et al. Role of insulin-transferrin-selenium in auricular chondrocyte proliferation and engineered cartilage formation in vitro. Int J Mol Sci. 15 (1), 1525-1537 (2014).
  19. Guzzo, R. M., Scanlon, V., Sanjay, A., Xu, R. H., Drissi, H. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential. Stem Cell Rev. 10 (6), 820-829 (2014).
  20. Goepfert, C., Slobodianski, A., Schilling, A. F., Adamietz, P., Portner, R. Cartilage engineering from mesenchymal stem cells. Adv Biochem Eng Biotechnol. 123, 163-200 (2010).
  21. Ingber, D. E., et al. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 12 (12), 3265-3283 (2006).
  22. Yoshida, Y., Yamanaka, S. Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation. 122 (1), 80-87 (2010).

Play Video

Citer Cet Article
Li, Y., Hai, Y., Chen, J., Liu, T. Differentiating Chondrocytes from Peripheral Blood-derived Human Induced Pluripotent Stem Cells. J. Vis. Exp. (125), e55722, doi:10.3791/55722 (2017).

View Video