Nous décrivons une méthode pour l'analyse qualitative et quantitative de la formation de granules de stress dans des cellules de mammifères après que les cellules sont confrontées à des bactéries et à un certain nombre de contraintes différentes. Ce protocole peut être appliqué pour étudier la réponse des granules de stress cellulaire dans une large gamme d'interactions hôtes-bactéries.
L'imagerie fluorescente des composants cellulaires est un outil efficace pour étudier les interactions hôte-pathogène. Les agents pathogènes peuvent affecter de nombreuses caractéristiques différentes des cellules infectées, y compris l'ultrastructure des organelles, l'organisation du réseau cytosquelettique, ainsi que les processus cellulaires tels que la formation du granulé du stress (SG). La caractérisation de la façon dont les agents pathogènes subversent les processus hôtes est une partie importante et intégrante du domaine de la pathogenèse. Bien que les phénotypes variables puissent être facilement visibles, l'analyse précise des différences qualitatives et quantitatives dans les structures cellulaires induites par le défi des agents pathogènes est essentielle pour définir des différences statistiquement significatives entre les échantillons expérimental et les témoins. La formation du SG est une réponse au stress évolutive qui conduit à des réponses antivirales et a longtemps été étudiée en utilisant des infections virales 1 . La formation SG affecte également les cascades de signalisation et peut avoir d'autres conséquences encore inconnues2 . La caractérisation de cette réponse au stress par des agents pathogènes autres que les virus, tels que les agents pathogènes bactériens, est actuellement un domaine émergent de recherche 3 . Pour l'instant, l'analyse quantitative et qualitative de la formation SG n'est pas encore utilisée de manière routinière, même dans les systèmes virales. Nous décrivons ici une méthode simple pour induire et caractériser la formation de SG dans les cellules non infectées et dans les cellules infectées par un agent pathogène bactérien cytosolique, ce qui affecte la formation de SG en réponse à divers contraintes exogènes. L'analyse de la formation et de la composition du SG est obtenue en utilisant un certain nombre de marqueurs SG différents et le plug-in détecteur spot de ICY, un outil d'analyse d'image open source.
La visualisation des interactions hôte-pathogène au niveau cellulaire est une méthode puissante pour obtenir des idées sur les stratégies pathogènes et pour identifier les voies cellulaires clés. En effet, les agents pathogènes peuvent être utilisés comme outils pour identifier des cibles ou des structures cellulaires importantes, car les agents pathogènes ont évolué pour subvertir les processus cellulaires centraux en tant que stratégie pour leur propre survie ou propagation. La visualisation des composants cellulaires peut être obtenue par l'expression recombinante de protéines hôtes marquées par fluorescence. Bien que cela permette une analyse en temps réel, la génération de lignées cellulaires avec des protéines hôtes spécifiquement étiquetées est très laborieuse et peut entraîner des effets secondaires indésirables. Plus pratique est la détection de facteurs cellulaires à l'aide d'anticorps spécifiques, car plusieurs facteurs d'hôte peuvent être analysés simultanément et l'un n'est pas limité à un type de cellule particulier. Un inconvénient est que seule une vue statique peut être capturée car l'analyse d'immunofluorescence nécessite une fixation de cellule hôteion. Cependant, un avantage important de l'imagerie immunofluorescente est qu'il se prête facilement à l'analyse qualitative et quantitative. Ceci à son tour peut être utilisé pour obtenir des différences statistiquement significatives pour fournir de nouvelles idées sur les interactions hôte-pathogène.
Les programmes d'analyse d'image fluorescente sont des outils analytiques puissants pour effectuer des analyses 3D et 4D. Cependant, le coût élevé du logiciel et de sa maintenance rend les méthodes basées sur des logiciels open source gratuits plus largement attrayantes. Une analyse d'image minutieuse utilisant un logiciel de bioannalyse est précieuse car elle confirme l'analyse visuelle et, lorsqu'on attribue des significations statistiques, augmente la confiance dans l'exactitude d'un phénotype donné. Auparavant, les SG ont été analysés à l'aide du logiciel ImageJ gratuit, ce qui nécessite l'identification manuelle des SG individuels 4 . Ici, nous fournissons un protocole pour l'induction et l'analyse de la formation de SG cellulaire dans le contexte du bacInfections tertiaires en utilisant le logiciel d'analyse de bio-image libre open source ICY (http://icy.bioimageanalysis.org). Le logiciel d'analyse de bio-image dispose d'un programme intégré de détection de points qui est très adapté à l'analyse SG. Il permet le réglage précis du processus de détection automatisé dans les régions d'intérêt spécifiées (ROI). Cela surmonte la nécessité d'une analyse manuelle des SG individuels et supprime le biais d'échantillonnage.
Beaucoup de contraintes environnementales induisent la formation de SG, qui sont des structures cytosoliques, non membranées densément denses, de 0,2 à 5 μm de diamètre 5 , 6 . Cette réponse cellulaire est évolutive conservée dans les levures, les plantes et les mammifères et se produit lorsque la traduction globale des protéines est inhibée. Il implique l'agrégation des complexes d'initiation de traduction bloqués en SG, qui sont considérés comme des lieux de maintien pour les ARNm traductionnellement inactifs, permettant la traduction sélective d'un sous-ensemble d'ARNm cellulaires.Après élimination du stress, les SG se dissolvent et les taux globaux de synthèse des protéines reprennent. Les SG sont composés de facteurs d'initiation à l'allongement de la traduction, des protéines impliquées dans le métabolisme de l'ARN, des protéines liées à l'ARN, ainsi que des protéines d'échafaudages et des facteurs impliqués dans la signalisation 2 de la cellule hôte, bien que la composition exacte puisse varier en fonction du stress appliqué. Les facteurs environnementaux qui induisent la formation de SG comprennent la famine des acides aminés, l'irradiation UV, les chocs thermiques, le choc osmotique, le stress du réticulum endoplasmique, l'hypoxie et l'infection virale 2 , 7 , 8 . De nombreux progrès ont été réalisés dans la compréhension de la façon dont les virus induisent et subent également la formation de SG, alors que peu de choses sont encore connues sur la façon dont d'autres agents pathogènes, tels que les agents pathogènes bactériens, fongiques ou protozoaires, affectent cette réponse de stress cellulaire 1 , 7 .
ShigeLla flexneri est un agent pathogène cytosolique facultatif gram-négatif des humains et l'agent causal de la diarrhée sévère ou de la shigellose. La shigellose est un fardeau majeur de la santé publique et entraîne 28 000 décès par année chez les enfants de moins de 5 ans 9 , 10 ans . S. flexneri infecte l'épithélium colique et se propage de cellule à cellule en détournant les composants cytosquelettiques de l'hôte 11 , 12 . L'infection de l'épithélium soutient la réplication de S. flexneri dans le cytosol, mais les macrophages infectés meurent à travers un processus de mort inflammatoire cellulaire appelé pyroptose. L'infection entraîne un recrutement massif de neutrophiles et une inflammation sévère accompagnée de chaleur, de stress oxydatif et de destruction des tissus. Ainsi, alors que les cellules infectées sont soumises à des contraintes internes induites par une infection, telles que la perturbation de Golgi, le stress génotoxique et le réarrangement cytosquelettiqueS, les cellules infectées sont également soumises à des contraintes environnementales dues au processus inflammatoire.
La caractérisation de l'effet de l'infection par S. flexneri sur la capacité des cellules à répondre aux contraintes environnementales en utilisant un certain nombre de marqueurs SG a démontré que l'infection entraîne des différences qualitatives et quantitatives dans la composition SG 3 . Cependant, on connaît peu d'autres agents pathogènes bactériens. Nous décrivons ici une méthodologie pour l'infection des cellules hôtes avec le pathogène cytosolique S. flexneri , le stress des cellules avec différents contraintes environnementales, l'étiquetage des composants SG et l'analyse qualitative et quantitative de la formation et de la composition du SG dans le contexte des infections Et des cellules non infectées. Cette méthode est largement applicable à d'autres agents pathogènes bactériens. En outre, l'analyse d'image de la formation SG peut être utilisée pour les infections par des virus ou d'autres agents pathogènes. Il peut être utilisé pour analyser SGFormation sur l'infection ou l'effet de l'infection sur la formation de SG en réponse à des contraintes exogènes.
Le protocole décrit ici décrit l'induction, la localisation et l'analyse des SG dans les cellules non infectées et les cellules infectées par le pathogène cytosolique S. flexneri en présence ou en l'absence de stress exogène. En utilisant un logiciel d'imagerie gratuit, les protocoles permettent une analyse qualitative et quantitative précise de la formation SG pour identifier et analyser statistiquement les différences dans les phénotypes donnés.
Il exist…
The authors have nothing to disclose.
PS est récipiendaire de la subvention Grand Challenge de Bill et Melinda Gates OPP1141322. PV a été soutenu par une bourse de mobilité postdocale de la Fondation nationale de la science nationale suisse et une bourse postdoctorale Roux-Cantarini. PJS est soutenu par une subvention HHMI et ERC-2013-ADG 339579-Decrypt.
Primary Antibodies | |||
eIF3b (N20), origin goat | Santa Cruz | sc-16377 | Robust and widely used SG marker. Cytosolic staining allows cell delineation. Dilution 1 in 300 |
eIF3b (A20), origin goat | Santa Cruz | sc-16378 | Same target as eIF3b (N20) and in our hands was identical to eIF3b (N20). Dilution 1 in 300 |
eIF3A (D51F4), origin rabbit (MC: monoclonal) | Cell Signaling | 3411 | Part of multiprotein eIF3 complex with eIF3b . Dilution 1 in 800 |
eIF4AI, origin goat | Santa Cruz | sc-14211 | Recommended by (Ref # 13). Dilution 1 in 200 |
eIF4B, origin rabbit | Abcam | ab186856 | Good stress granule marker in our hands. Dilution 1 in 300 |
eIF4B, origin rabbit | Cell Signaling | 3592 | Recommended by Ref # 13. Dilution 1 in 100 |
eIF4G, origin rabbit | Santa Cruz | sc-11373 | Widely used SG marker. (Ref # 13): may not work well in mouse cell lines. Dilution 1 in 300 |
G3BP1, origin rabbit (MC: monoclonal) | BD Biosciences | 611126 | Widely used SG marker. Dilution 1 in 300 |
Tia-1, origin goat | Santa Cruz | sc-1751 | Widely used SG marker. Can also be found in P bodies when SG are present (Ref # 13). Dilution 1 in 300 |
Alexa-conjugated Secondary Antibodies | |||
A488 anti-goat , origin donkey | Thermo Fisher | A-11055 | Cross absorbed. Dilution 1 in 500 |
A568 anti-goat, origin donkey | Thermo Fisher | A-11057 | Cross absorbed. Dilution 1 in 500 |
A488 anti-mouse, origin donkey | Thermo Fisher | A-21202 | Dilution 1 in 500 |
A568 anti-mouse, origin donkey | Thermo Fisher | A10037 | Dilution 1 in 500 |
A647 anti-mouse, origin donkey | Thermo Fisher | A31571 | Dilution 1 in 500 |
A488 anti-rabbit, origin donkey | Thermo Fisher | A-21206 | Dilution 1 in 500 |
A568 anti-rabbit, origin donkey | Thermo Fisher | A10042 | Dilution 1 in 500 |
Other Reagents | |||
Shigella flexneri | Available from various laboratories by request | ||
Tryptone Casein Soya (TCS) broth | BD Biosciences | 211825 | Standard growth medium for Shigella, application – bacterial growth |
TCS agar | BD Biosciences | 236950 | Standard growth agar for Shigella, application – bacterial growth |
Congo red | SERVA Electrophoresis GmbH | 27215.01 | Distrimination tool for Shigell that have lost the virulence plasmid, application – bacterial growth |
Poly L lysine | Sigma-Aldrich | P1274 | Useful to coating bacteria to increase infection, application – infection |
Gentamicin | Sigma-Aldrich | G1397 | Selective killing of extracellular but not cytosolic bacteria, application – infection |
HEPES | Life Technologies | 15630-056 | PH buffer useful when cells are incubated at room-temperature, application – cell culture |
DMEM | Life Technologies | 31885 | Standard culture medium for HeLa cells, application – cell culture |
Fetal calf serum | Biowest | S1810-100 | 5% supplementation used for HeLa cell culture medium, application – cell culture |
Non-essential amino acids | Life Technologies | 11140 | 1/100 dilution used for HeLa cell culture medium, application – cell culture |
DMSO | Sigma-Aldrich | D2650 | Reagent diluent, application – cell culture |
Sodium arsenite | Sigma-Aldrich | S7400 | Potent stress granule inducer (Note: highly toxic, special handling and disposal required), application – stress inducer |
Clotrimazole | Sigma-Aldrich | C6019 | Potent stress granule inducer (Note:health hazard, special handling and disposal required), application – stress inducer |
PFA | Electron Microscopy Scences | 15714 | 4% PFA is used for standard fixation of cells, application – fixation |
Triton X-100 | Sigma-Aldrich | T8787 | Used at 0.03% for permeabilizationof host cells before immunofluorescent staining, application – permeabilization |
A647-phalloidin | Thermo Fisher | A22287 | Dilution is at 1/40, best added during 2ary antibody staining, application – staining |
DAPI | Sigma-Aldrich | D9542 | Nucleid acid stain used to visualize both the host nucleus and bacteria, application – staining |
Parafilm | Sigma-Aldrich | BR701501 | Paraffin film useful for immunofluorescent staining of coverslips, application – staining |
Prolong Gold | Thermo Fisher | 36930 | Robust mounting medium that works well for most fluorophores , application – mounting |
Mowiol | Sigma-Aldrich | 81381 | Cheap and robust mounting medium that works well for most fluorophores, application – mounting |
24-well cell culture plate | Sigma-Aldrich | CLS3527 | Standard tissue culture plates, application – cell culture |
12-mm glass coverslips | NeuVitro | 1001/12 | Cell culture support for immunofluorescent applications, application – cell support |
forceps | Sigma-Aldrich | 81381 | Cheap and obust mounting medium that works well for most fluorophores, application – mounting |
Programs and Equipment | |||
Prism | GraphPad Software | Data analysisand graphing program with robust statistical test options, application – data analysis | |
Leica SP5 | Leica Microsystems | Confocal microsope, application – image acquisition | |
Imaris | Bitplane | Professional image analysis program, application – data analysis | |
Excel | Microsoft | Data analysis and graphing program, application – data analysis |