В данной статье описан новый метод для быстрого производства высококачественных биоинспирированных наноразмерного гидроксиапатита. Этот биоматериал имеет большое значение при изготовлении широкого спектра инновационных медицинских приборов для клинического применения в ортопедии, черепно-лицевой хирургии и стоматологии.
Гидроксиапатита (ГА) широко используется в качестве медицинского керамики из-за его хорошей биосовместимости и Остеокондуктивность. В последнее время наблюдается интерес в отношении использования биоинспирированных наноразмерного гидроксиапатита (НСЗ). Тем не менее, биологический апатит, как известно, кальций-дефицитных и карбонат-замещенный наноразмерного пластинчатой морфологии. Биоинспирированных Nha имеет потенциал, чтобы стимулировать оптимальную регенерацию костной ткани из-за его сходства с костной и зубной эмали минерала. Многие из методов в настоящее время используется для изготовления Nha как в лаборатории, так и на коммерческой основе, включают длительные процессы и сложного оборудования. Таким образом, цель данного исследования состояла в том, чтобы разработать быстрый и надежный способ получения высокого качества биоинспирированных НСЗ. Быстрый способ перемешивания разработан был основан на кислотно-щелочной реакции, включающей гидроксид кальция и фосфорной кислоты. Вкратце, раствор фосфорной кислоты выливают в раствор гидроксида кальция с последующим перемешиванием, промывки исушильные ступени. Часть партии обжигали при 1000 ° С в течение 2 ч, чтобы исследовать высокую температурную стабильность Продукции. рентгеноструктурный анализ показал успешное формирование HA, которое показало термическое разложение к бета-трикальцийфосфат после высокотемпературной обработки, что характерно для кальцийдефицитного HA. ИК-фурье-спектроскопии показал наличие карбонатных групп в осажденном продукте. Частицы nhà имели низкий коэффициент формы с приблизительными размерами 50 х 30 нм, близкими к размерам биологического апатита. Материал был также кальций дефицитных с Са: мольном соотношении Р 1,63, который, как и биологический апатит ниже, чем стехиометрическое соотношение, HA 1,67. Таким образом, этот новый метод является надежным и гораздо более удобным процесс производства биоинспирированных NHA, преодолев необходимость длительных титрование и сложного оборудования. Полученный в результате продукт биоинспирированных HA подходит для использования в самых разнообразныхмедицинских и потребительских приложений здравоохранения.
Существует большая клиническая потребность для продвинутых биоматериалов с расширенными функциональными возможностями для того, чтобы улучшить качество жизни пациентов и снизить нагрузку здравоохранения глобального старения населения. Гидроксиапатита широко используется в медицинских целях в течение многих лет из-за его хорошей биосовместимости. В последнее время наблюдается повышенный интерес к использованию наноразмерных гидроксиапатита (НСЗ), в частности, для регенерации минерализованной ткани в медицине и стоматологии. Минерал найден в костном и эмали зубов является кальций-дефицитных, мульти-замещенные, наноразмерный гидроксиапатит. Оценки размера биологических тромбоцитов Nha сообщают размеры 50 нм х 30 нм х 2 нм 1, с еще более мелких структур , описанных в незрелой кости 2. Контрастно, минерал в зубной эмали составляет от 10 до 100 раз больше , чем найденное в костной ткани и в длине и ширине 3, 4. Синтетические НСЗ может быть лучше называть биоинспирированных, а не биомиметический, так как мы стремимся перевести наблюдения относительно характеристик природных материалов в медицинских технологий с улучшенными характеристиками. Было высказано предположение , что биоинспирированных nhà может быть более благоприятным в костной ткани и регенерации тканей зуба применений из – за его сходства с природе минерал 5.
Существуют различные методы , которые были зарегистрированы для подготовки Nha включая гидротермальных 6, окрашенная сухой 7 и золь-гель 8 методов. Из них метод мокрого осаждения считается относительно удобным способом для производства NHA. Опубликованные методы nhà мокрая осадков , как правило , включают стадию титрование при смешивании кальция и фосфора химических предшественников 9, 10, 11,исх "> 12, 13, 14. Тем не менее, эти подходы связаны с целым рядом недостатков , в том числе длительных и сложных процессов , объединенных в некоторых случаях с необходимостью использования дорогостоящего оборудования. Коммерческое производство может быть еще более сложной, с патентов , описывающих сложные реакторы для производство высококачественных медицинского качества nhà 15. Несмотря на это, реакция нейтрализации между гидроксидом кальция и фосфорной кислоты является предпочтительным из – за отсутствия пагубного химических побочных продуктов.
Взаимосвязь между условиями процесса, так и морфологию продукта nhà сообщалось для медленных реакций титрованием. В частности, для методов титрования с участием гидроксида кальция и фосфорной кислоты, при повышенной температуре , казалось, способствовать подготовке частиц с низким соотношением сторон 13. Эта работа была значительно расширена Genплитка и др. 16 , которые продемонстрировали зависимость между температурой и другими условиями обработки на качество продукции nhà из широкого спектра методов. Он пришел к выводу , что мокрый метод химического осаждения из Пракаш 13 сделал высокое качество продукции, но следует отметить , что результаты зависели от технически сложных и медленных / процессов смешивания. Оригинальный Пракаш шаг титрование занимает в течение одного часа. Тем не менее, более длительное время титрование может потребоваться для более крупных пакетов, чтобы быть готовым.
Подводя итог, в то время как влияние нескольких факторов, включая температуру в настоящее время изучены, почти не внимание было направлено на снижение сложности и связанные с ними время, необходимое для выполнения титрования на основе методов. Целью данного исследования было поэтому исследовать эффекты применения быстрого подхода к смеси при производстве биоинспирированных НСЗ, и полностью characteriZe полученные материалы. В случае успеха, упрощенная быстрый подход смесь будет иметь большие преимущества для лабораторных исследователей и промышленности, так, где издержки производства может быть существенно уменьшена без содержащий качество.
Природные апатит состоит из наноразмерные частицы нестехиометрического газированной гидроксиапатита с приближенным химической формулой Ca 10-ху [(HPO 4) (PO 4)] 6-х (CO 3) Y (ОН) 2-х. Производство биоматериалов с близкой химической схожести природе минерал, как сообщалось, способствуют оптимальной биологической реакции. Например, исследование на биомиметического кальцийдефицитного газированной nhà показал , что способен стимулировать пролиферацию и активность щелочной фосфатазы мышиных preosteoblast клеток в большей степени , чем обычные nhà 19.
В этом исследовании, осаждение ГА , который показал частичное термическое разложение при 1000 ° С (рисунок 2) предложил образование кальцийдефицитного HA. Это предложение было поддержано более низкой , чем стехиометрическое Са: Р (1.63) , полученные с данными XRF (Tв состоянии 1). Понятно , что сниженная Са: Р связано с более низкой термостабильностью 20, 21, 22, 23. В этом методе, быстрое добавление раствора фосфорной кислоты быстро понижении рН реакционной суспензии , для генерации HPO 4 ионов. Присутствие HPO 4 группы способствовали осаждению кальция кальцийдефицитный ГА, с молекулярной формулой: Са 10-х (HPO 4) x (PO 4) 6-х (ОН) 2-х, где 0 <х <1.
Быстрое добавление фосфорной кислоты поэтому имели заметное влияние на осаждении кинетики реакции. Как было описано ранее, титрование реакции с участием гидроксида кальция и фосфорной кислоты проводят при комнатной температуре , как правило, дают частицы с высоким соотношением сторон 13. Для titratioп реакций с участием этих реагентов, необходимо было использовать при повышенной температуре для получения частиц с более низким соотношением сторон , которые больше похожи на биологической апатита 13. Частицы с высоким уровнем соотношения получаются , когда скорость зарождения кристалла происходит медленнее , чем скорость роста кристалла 24. Для получения нового метода, разработанного в данном исследовании, быстрое добавление раствора фосфорной кислоты, возможно, при условии, большее количество центров кристаллизации, которые привели к увеличению присутствия мелких округлых частиц, в отличие от меньшего количества частиц с большим соотношением сторон. Поскольку авторы не полностью исследовали эффекты медленно выливая фосфорной кислоты в суспензии гидроксида кальция, для достижения стабильных результатов мы рекомендуем фосфорную кислоту сливают со скоростью сравнимо с тем, как показано на видео (приблизительно 100 мл / с).
В процессе разработки этого метода, авторы INVestigated ряд дополнительных изменений в способе получения NHA на основе Prakash и др. 13 в том числе сравнение продуктов , полученных с медленным титрованием и быстрым добавлением раствора фосфорной кислоты 25. Было установлено, что медленное титрование фосфорной кислоты в суспензии гидроксида кальция, приводит к получению продукта с остатком гидроксида кальция. Мы полагаем, что изменение рН, вызванное быстрым добавлением фосфорной кислоты рекомендуется растворение гидроксида кальция и, следовательно, допускается для успешного превращения реагентов в гидроксиапатита. Сравнение продуктов, полученных с использованием метода быстрого перемешивании при комнатной и повышенных температурах (60 ° С), обнаружили, что при повышенной температуре приводит к более высокой проводимости после завершения реакции. Это позволило предположить, что остаточный гидроксид кальция, который присутствовал, вероятно, будет из-за низкой растворимости гидроксида кальция вповышенные температуры. Присутствие остаточного гидроксида кальция нежелательно, так как основная природа этого соединения может поставить под угрозу биосовместимость.
ИК – Фурье обнаружен характерный фосфат и гидроксильную группу активность , связанную с HA (рисунок 3). Было отмечено, что спектр для спеченного продукта показал, что более резкие фосфатные и гидроксильные пики. Эти изменения были связаны с большей степенью кристалличности продукта 26, 27 .The неспеченного спектра при условии доказательства карбонатного замещения B-типа , где карбонатные ионы подменили фосфатных групп. Это в отличие от типа A замещения , где карбонатные ионы могут замещать гидроксильных групп 17. Сообщалось , что замещение карбоната В-типа происходит в биологической апатита 3. Тем не менее, Предприятие Tampieri и др. Сообщается, что в то время как замещение B-типа был predominмуравей в молодых костей, А-типа карбоната замещение было все больше и больше присутствует в костях пожилых людей 28. Карбонат замещение было обнаружено, чтобы уменьшить степень кристалличности и термическую стабильность NHA, увеличивая его растворимость. Были предложены эти изменения , чтобы способствовать увеличению биоактивности карбонатом-замещенных HA 29. Биологическое HA также известно, содержат некоторые из других элементов , записанных в рентгенофлуоресцентного анализа (таблица 1), таких как магний, натрий и стронций 30. Наличие этих элементов может также способствовать повышению биологической эффективности. Будущая работа должна быть направлена на подготовку этих наноразмерных замещенных апатитов, а также продукты с повышенным biofunctionality , таких как серебро , легированного Nha 31. Для того чтобы получить замещенный NHA, элемент может быть введен с соответствующим уменьшением предполагаемого элемента к substitutе для, например , уменьшение количества соединения кальция , когда стронций, магний или цинк замена попытка 32. В качестве альтернативы, другой подход может быть добавление элементов с целью обеспечения «легированные» ионы , которые присутствуют на поверхности ГУЖС без того, чтобы обязательно заменить элемент в кристаллическую решетку HA 31. Для этих модификаций метода можно приготовить смешанные растворы, такие как гидроксид кальция и нитрата серебра, а также проводить реакцию таким же способом, как описано здесь.
В заключение, этот документ сообщает новый быстрый и существенно улучшенный способ получения биоинспирированных НСЗ. Для этого метода, быстрое смешивание химикатов занимает менее 5 секунд, что является заметное сокращение времени по сравнению с титровании реакции, как правило, требующих часов тщательного контроля. Она имеет большой потенциал для использования в BIOMATПерс развитие из-за своей относительной простоты и низкой стоимости по сравнению с используемыми в настоящее время промышленными методами производства НСЗ, где присущая сложность текущих результатов коммерческих систем в длительных исследований и разработок времен, и существенно увеличились производственные затраты. В частности, этот новый метод превосходит непрерывных процессов потока или методов гидротермальных из-за значительного снижения инвестиционных требований пуска оборудования.
The authors have nothing to disclose.
Эта работа была поддержана СЛУЧАЙ студенчества EPSRC в сотрудничестве с Ceramisys Ltd. и также связан с MEDE инноваций, EPSRC центр инновационного Производство в медицинских приборах [номер гранта EP / K029592 / 1]. Авторы хотели бы также поблагодарить Роберта Бертона в Шеффилдского университета для рентгенофлуоресцентного анализа.
Calcium hydroxide (purity of ≥ 96%) | Sigma Aldrich UK | 31219 | Good laboratory practise should be used at all times including the use of appropriate personal protective equipment. |
Phosphoric acid (85 %) | Sigma Aldrich UK | 345245 | Safety goggles and a faceshield should be used when handling this product (see safety data sheet from Sigma Aldrich for further information). |
STOE IP x-ray diffractometer | Phillips | ||
International centre for diffraction data (ICDD) PDF4+ database | International Centre for Diffraction Data | ||
Holey carbon films on 300 mesh grids | Agar Scientific | S147-3H | |
Tecnai G2 Spirit transmission electron microscope | FEI | ||
Lithium tetraborate | ICPH, Malzéville, France | ||
PW2440 XRF spectrometer | Philips | ||
ThermoScientific Nikolett Spectrometer | Unicam Ltd |