Summary

Biosensing Motor Neuron Membran Potential i Live Zebrafish Embryoer

Published: June 26, 2017
doi:

Summary

Protocols described here allow for the study of the electrical properties of excitable cells in the most non-invasive physiological conditions by employing zebrafish embryos in an in vivo system together with a fluorescence resonance energy transfer (FRET)-based genetically encoded voltage indicator (GEVI) selectively expressed in the cell type of interest.

Abstract

The protocols described here are designed to allow researchers to study cell communication without altering the integrity of the environment in which the cells are located. Specifically, they have been developed to analyze the electrical activity of excitable cells, such as spinal neurons. In such a scenario, it is crucial to preserve the integrity of the spinal cell, but it is also important to preserve the anatomy and physiological shape of the systems involved. Indeed, the comprehension of the manner in which the nervous system-and other complex systems-works must be based on a systemic approach. For this reason, the live zebrafish embryo was chosen as a model system, and the spinal neuron membrane voltage changes were evaluated without interfering with the physiological conditions of the embryos.

Here, an approach combining the employment of zebrafish embryos with a FRET-based biosensor is described. Zebrafish embryos are characterized by a very simplified nervous system and are particularly suited for imaging applications thanks to their transparency, allowing for the employment of fluorescence-based voltage indicators at the plasma membrane during zebrafish development. The synergy between these two components makes it possible to analyze the electrical activity of the cells in intact living organisms, without perturbing the physiological state. Finally, this non-invasive approach can co-exist with other analyses (e.g., spontaneous movement recordings, as shown here).

Introduction

In vivo systemisk komponentanalyse giver forskere mulighed for at undersøge cellulær adfærd på den mest pålidelige måde. Dette er især tilfældet, når aktiviteten under kontrol er stærkt påvirket af cellecelleinteraktioner (både kontakt- og ikke-kontaktafhængige) som i nervesystemet, hvor membranspændingsændringer driver kommunikationen blandt spændende celler. Forståelsen af ​​informationen kodet af disse elektriske signaler er nøglen til at forstå den måde nervesystemet virker i både fysiologiske og sygdomstilstande.

For at studere celle elektriske egenskaber i de mest ikke-invasive fysiologiske forhold er der for nylig udviklet flere genetisk kodede spændingsindikatorer 1 . I modsætning til de tidligere generationer af optiske spændingsfølere (primært spændingsfølsomme farvestoffer) 2 giver GEVI'er mulighed for in vivo analyser af det intakte neurale system ogDeres udtryk kan begrænses til specifikke celletyper eller populationer.

Zebrafish embryoet er det valgte in vivo "substrat" ​​for at drage fordel af det store potentiale, der tilskrives GEVI'er. Takket være sin optiske klarhed og dets forenklede, men evolutionært konserverede nervesystem gør Zebrafish-modellen faktisk det muligt at identificere og manipulere hver enkelt cellulær komponent i et netværk. Faktisk har beskæftigelsen af ​​den FRET-baserede GEVI Mermaid 3 ført til identifikation af præ-symptomatiske ændringer i spinalmotor-neuronadfærd i en zebrafiskmodel af amyotrofisk lateralsklerose (ALS) 4 .

Følgende in vivo- protokol beskriver hvordan man overvåger de elektriske egenskaber hos spinalmotorneuroner i intakte zebrafiskembryoner, der udtrykker havfrue på en neuronspecifik måde. Desuden demonstrerer det, hvordan farmakologisk induceret chanGes i sådanne elektriske egenskaber kan være forbundet med ændringer i hyppigheden af ​​embryonale spontane coilings, den stereotype motoriske aktivitet, som karakteriserer zebrafiskens bevægelsesadfærd i meget tidlige udviklingsstadier.

Protocol

1. pHuC_Mermaid Plasmid Generation BEMÆRK: Havfrue er en biosensor udviklet ved at parre det spændingsfølsomme domæne (VSD) af Ciona intestinalis (nu Ciona robusta ) 5 spændingssensor indeholdende fosfatase (Ci-VSP) med FRET-partner fluorophores Umi-Kinoko Green (mUKG: donor) og en monomer version af det orange-emitterende fluorescerende protein Kusabira Orange (mKOk: acceptor). For denne biosensor forøger konformationsændringer af VS…

Representative Results

En ekspressionsvektor, der bærer den FRET-baserede havfrue-biosensorkodningssekvens under kontrol af den pHuC-pan-neuronale promotor, som driver proteinets syntese udelukkende i nervesystemet, blev leveret til enkeltcellede befrugtede æg ved hjælp af en mikroinjektion i For at opnå transiente transgene embryoner ( figur 1 , Venstre panel). Efter mastering af mikroinjektionsteknikken var procentdelen af ​​havfrue-positive embryoner tæt på 100%…

Discussion

Protokollen, der præsenteres her, tillod os at undersøge sammenhængen mellem de elektriske egenskaber af zebrafisk embryon spinalmotor neuroner og spontan coiling opførsel, den tidligste stereotypiske motor aktivitet, der vises omkring 17 hpf embryonale udvikling og varer indtil 24 hpf 10 .

Vores tilgang giver forskere et værktøj til at studere neurale systemet af intakte embryoner, der fuldt ud bevarer kompleksiteten af ​​interaktionerne mellem celler i et …

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Simona Rodighiero for her priceless support with the FRET imaging analysis.

Materials

Low Melting Point Agarose  Sigma-Aldrich A9414
DMSO  Sigma-Aldrich W387520
Riluzole Sigma-Aldrich R116
Pfu Ultra HQ DNA polymerase  Agilent Technologies – Stratagene Products Division 600389
T3 Universal primer  Sigma-Aldrich
Wizard SV Gel and PCR Clean-Up system Promega A9280
Universal SmaI primer  Eurofins
StrataClone Mammalian Expression Vector System / pCMV-SC blunt vector  Agilent Technologies – Stratagene Products Division  240228
SmaI  New England Biolabs R0141S
T4 DNA ligase Promega M1801
SalI New England Biolabs R0138S
EcoRV New England Biolabs R0195S
35 mm, glass-bottomed imaging dish  Ibidi 81151
forceps Sigma-Aldrich F6521
Stereomicroscope Leica Microsystems M10 F
Digital camera Leica Microsystems DFC 310 FX
Leica Application Suite 4.7.1 software  Leica Microsystems
QuickTime Player, v10.4 Apple
Confocal microscope (inverted) Leica Microsystems TCS SP5
Microinjector  Eppendorf  Femtojet
ImageJ macro Biosensor_FRET 
GraphPad Prism 6.0c  GraphPad Software, Inc

References

  1. Knöpfel, T., Gallero-Salas, Y., Song, C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr Opin Chem Biol. 27, 75-83 (2015).
  2. Chemla, S., Chavane, F. Voltage-sensitive dye imaging: Technique review and models. J Physiol Paris. 104 (1-2), 40-50 (2010).
  3. Tsutsui, H., Karasawa, S., Okamura, Y., Miyawaki, A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods. 5 (8), 683-685 (2008).
  4. Benedetti, L., et al. INaP selective inhibition reverts precocious inter- and motorneurons hyperexcitability in the Sod1-G93R zebrafish ALS model. Sci Rep. 6, 24515 (2016).
  5. Pennati, R., et al. Morphological differences between larvae of the Ciona intestinalis species complex: hints for a valid taxonomic definition of distinct species. PLoS ONE. 10 (5), 0122879 (2015).
  6. Park, H. C., et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 227 (2), 279-293 (2000).
  7. Yuan, S., Sun, Z. Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos. J Vis Exp. (27), (2009).
  8. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J Vis Exp. (25), (2009).
  9. Drapeau, P., et al. Development of the locomotor network in zebrafish. Prog Neurobiol. 68 (2), 85-111 (2002).
  10. Brustein, E., et al. Steps during the development of the zebrafish locomotor network. J Physiol Paris. 97 (1), 77-86 (2003).
  11. Drapeau, P., Ali, D. W., Buss, R. R., Saint-Amant, L. In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J Neurosci Methods. 88, 1-13 (1999).
  12. Kawakami, K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 8, (2007).
  13. Sungmoo, L., et al. Imaging Membrane Potential with Two Types of Genetically Encoded Fluorescent Voltage Sensors. J Vis Exp. (108), e53566 (2016).
check_url/fr/55297?article_type=t

Play Video

Citer Cet Article
Benedetti, L., Ghilardi, A., Prosperi, L., Francolini, M., Del Giacco, L. Biosensing Motor Neuron Membrane Potential in Live Zebrafish Embryos. J. Vis. Exp. (124), e55297, doi:10.3791/55297 (2017).

View Video