A viable technique for the formation of strontium titanate bicrystals at high pressure and fast heating rate via the spark plasma sintering apparatus is developed.
A spark plasma sintering apparatus was used as a novel method for diffusion bonding of two single crystals of strontium titanate to form bicrystals with one twist grain boundary. This apparatus utilizes high uniaxial pressure and a pulsed direct current for rapid consolidation of material. Diffusion bonding of strontium titanate bicrystals without fracture, in a spark plasma sintering apparatus, is possible at high pressures due to the unusual temperature dependent plasticity behavior of strontium titanate. We demonstrate a method for the successful formation of bicrystals at accelerated time scales and lower temperatures in a spark plasma sintering apparatus compared to bicrystals formed by conventional diffusion bonding parameters. Bond quality was verified by scanning electron microscopy. A clean and atomically abrupt interface containing no secondary phases was observed using transmission electron microscopy techniques. Local changes in bonding across the boundary was characterized by simultaneous scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy.
Frittage Spark plasma (SPS) est une technique dans laquelle l' application d' une pression uniaxiale élevée et conduit à courant continu à impulsions à la densification rapide de la poudre compacte 1. Cette technique conduit également à la formation réussie de structures composites à partir de divers matériaux, y compris du nitrure de silicium / carbure de silicium, borure de zirconium / carbure de silicium ou le carbure de silicium, sans adjuvants de frittage supplémentaires nécessaires 2, 3, 4, 5. La synthèse de ces structures composites par des moyens classiques de pressage à chaud avait été difficile dans le passé. Bien que l' application d'une pression uniaxiale élevée et le taux de chauffage rapide par la technique SPS améliore la consolidation des poudres et des matériaux composites, le phénomène provoquant cette densification accrue débattue dans la littérature 2, 3,class = "xref"> 6, 7. Il existe également que des informations limitées concernant l'influence des champs électriques sur la formation des joints de grains et les structures atomiques résultantes des noyaux de joints de grains 8, 9. Ces structures de base déterminent les propriétés fonctionnelles des matériaux frittés SPS, y compris la répartition électrique des condensateurs à haute tension et la résistance mécanique et la ténacité des 10 oxydes céramiques. Par conséquent, la compréhension de la structure des joints de grains de base en fonction des paramètres de traitement SPS, tels que le courant appliqué est nécessaire pour la manipulation des propriétés physiques globales d'un matériau. Une méthode pour élucider systématiquement les mécanismes physiques fondamentaux qui sous – tendent SPS est la formation de structures de joints de grains spécifiques, à savoir, bicristaux. Un bicristal est créé par la manipulation de deux monocristaux, qui sont ensuite diffusion liée avec désorientation spécifique angles 11. Cette méthode permet d' une manière contrôlée pour étudier les structures de noyau de joints de grains fondamentales en fonction des paramètres de traitement, la concentration de dopant, et l' impureté de ségrégation 12, 13, 14.
Soudage par diffusion dépend de quatre paramètres: la température, la durée, la pression et l' atmosphère de liaison 15. Conventionnel liaison par diffusion de titanate de strontium (SrTiO 3, STO) bicristaux se produit typiquement à une pression inférieure à 1 MPa, dans une plage de température de 1,400-1,500 ° C et des échelles de temps allant de 3 à 20 heures 13, 14, 16, 17. Dans cette étude, la liaison dans un appareil SPS est réalisé à différentes échelles de température et de temps significativement plus bas à comparaison des procédés classiques. Pour les matériaux polycristallins, réduit les échelles de température et de temps via SPS limite considérablement la croissance des grains, assurant ainsi un contrôle avantageux des propriétés d'un matériau à travers la manipulation de sa microstructure.
L'appareil SPS, pour un échantillon de 5 x 5 mm 2, exerce une pression minimale de 140 MPa. Dans la gamme conventionnelle de la température de soudage par diffusion, Hutt et al. signaler la rupture instantanée de la STO lorsque la pression de liaison est supérieure à 10 MPa 18. Cependant, la STO présente un comportement de plasticité dépendant de la température, de la pression de collage indiquant peut dépasser 10 MPa à des températures spécifiques. Au-dessus de 1200 ° C et inférieure à 700 ° C, STO présente une certaine ductilité, au cours de laquelle des contraintes supérieures à 120 MPa peuvent être appliquées sans fracture immédiate de l'échantillon. Dans la gamme de température intermédiaire de 700-1,200 ° C, la STO est la rupture instantanée fragile et expériences stresses supérieure à 10 MPa. À 800 ° C, la STO a déformabilité mineur avant la rupture à des contraintes inférieures à 200 MPa , 19, 20, 21. Par conséquent, des températures de liaison pour la formation STO bicristal SPS par l'intermédiaire d'un appareil doivent être choisis en fonction du comportement de plasticité du matériau.
La température de collage de 1200 ° C a été choisie pour maximiser la diffusion sous forme de petits changements de température peuvent affecter fortement la cinétique de l'ensemble des mécanismes de liaison par diffusion. Une température de 1200 ° C est en dehors de la plage de température de transition fragile-ductile du STO. Toutefois, l'échantillon a subi une rupture fragile à cette température. L'échec catastrophique de la bicristal STO était pas inattendue que STO a ~ 0,5% ductilité à …
The authors have nothing to disclose.
LH tient à remercier le soutien financier par une Science Foundation Graduate Research Fellowship US National sous Grant No. 1148897. La microscopie électronique la caractérisation et le traitement SPS à l'UC Davis a été soutenu financièrement par une bourse de l'Université de Californie Laboratory Fee (n ° 12-LR-238313). Travail à la Fonderie Moléculaire a été soutenu par le Bureau de la science, Bureau des sciences fondamentales de l' énergie, du Département américain de l' énergie sous contrat No. DE-AC02-05CH11231.
Strontium titanate single crystal (100) | MTI Corporation | STOa101005S1-JP | |
Buffered oxide etch, hyrofluoric acid 6:1 | JT Baker | MBI 1178-03 | |
Scanning electron microscope (SEM) | FEI | Model: 430 NanoSEM | |
SPS apparatus | Sumitomo Coal Mining Co | Model: Dr. Sinter 5000 SPS Apparatus | |
High Temperature Furnace | Thermolyne | Model: 41600 | |
Ultrasonic Cleaner | Bransonic | Model: 221 | |
Mechanical polisher | Allied High Tech Products | 15-2100-TEM | |
Diamond lapping film | 3M | 660XV | 1 um to 9 um Grit Size |
Diamond lapping film | 3M | 661X | 0.5 um to 0.1 um Grit Size |
Colloidal silica | Allied High Tech Products | 180-20000 | .05 um Grit Size |
Sputter coater | QuorumTech | Model: Q150RES | |
Focused ion beam (FIB) instrument | FEI | Model: Scios dual-beamed focused ion beam (FIB) instrument | |
Nanomill TEM specimen preparation system | Fischione Instruments | Model: 1040 | |
Transmission electron microscope (TEM) | JEOL | Model: JEM2500 SE | |
Scanning transmission electron microscope (STEM) | FEI | Model: TEAM 0.5 |