Many proteins perform their function when attached to membrane surfaces. The binding of extrinsic proteins on nanodisc membranes can be indirectly imaged by transmission electron microscopy. We show that the characteristic stacking (rouleau) of nanodiscs induced by the negative stain sodium phosphotungstate is prevented by the binding of extrinsic protein.
Monotopic proteins exert their function when attached to a membrane surface, and such interactions depend on the specific lipid composition and on the availability of enough area to perform the function. Nanodiscs are used to provide a membrane surface of controlled size and lipid content. In the absence of bound extrinsic proteins, sodium phosphotungstate-stained nanodiscs appear as stacks of coins when viewed from the side by transmission electron microscopy (TEM). This protocol is therefore designed to intentionally promote stacking; consequently, the prevention of stacking can be interpreted as the binding of the membrane-binding protein to the nanodisc. In a further step, the TEM images of the protein-nanodisc complexes can be processed with standard single-particle methods to yield low-resolution structures as a basis for higher resolution cryoEM work. Furthermore, the nanodiscs provide samples suitable for either TEM or non-denaturing gel electrophoresis. To illustrate the method, Ca2+-induced binding of 5-lipoxygenase on nanodiscs is presented.
في البحوث الطبية، وتركز الكثير من الاهتمام على بروتينات الغشاء، داخلية كانت أم خارجية، والمشاركة في مجموعة متنوعة من التفاعلات الدهون. العمل مع البروتينات التفاعل الدهون يتضمن إما اختيار بديلا عن الدهون، مثل المنظفات، amphipols 1، أو بروتينات صغيرة 2، أو إيجاد بديل غشاء التي تحافظ على بروتين قابل للذوبان ونشطة. وتشمل بدائل غشاء ليبويك الجسيمات الشحمية وnanodiscs (ND) 3، 4.
Nanodiscs هي منصات غشاء شبه الأم التي وضعتها الهندسة الجزء البروتين، وبرنامج عمل ألماتي-1، من البروتين الدهني عالي الكثافة (HDL) التي تحدث بشكل طبيعي في الدم. برنامج عمل ألماتي-1 هو سلسلة 243 بقايا طويلة من قصيرة متقابلة الزمر α-اللوالب، ولها التشكل للذوبان خالية من الدهون. في المختبر في وجود الدهون، نسختين من البروتين برنامج عمل ألماتي-1 إعادة ترتيب تلقائيا إلى تطويق HYDRophobic جزء سلسلة أسيل من الدهن طبقة ثنائية التصحيح 5. النسخ المهندسة لبرنامج عمل ألماتي-1 وتسمى عادة بروتينات الغشاء السقالات (MSP)، وعدد متزايد متاح تجاريا باسم البلازميدات أو تنقية البروتينات. التكرار أو الحذف من α-اللوالب في برنامج عمل ألماتي-1 نتيجة في أطول 6 أو أقصر البروتينات السقالات 7 الغشاء. وهذا بدوره يجعل من الممكن لتشكيل أقراص حوالي 6 نانومتر إلى 17 نانومتر 7 8 في قطر. وهناك أنواع مختلفة من التطبيقات لnanodiscs 3 و 9. التطبيق الأكثر شيوعا هو لتوفير بيئة غشاء شبه أصلي لتحقيق الاستقرار في بروتين الغشاء لا يتجزأ 8، سبق استعراضها 3 و 9. واستخدام أقل استكشافها هو لتوفير سطح غشاء النانو لدراسة البروتينات 10، 11، 12، 13، 14، 15، 16، 17 غشاء الطرفية. المادة 1 من البروتوكول يتصور تحت الإجراء لصنع nanodiscs تتألف من الدهون الفوسفاتية والبروتين غشاء السقالات.
تحضير عينات هو عنق الزجاجة في معظم الطرق. عينات طريقة محددة قد تضيف معلومات معينة، ولكنها أيضا إجراء مقارنات النتائج صعوبة. وبالتالي، فمن أبسط عندما العينات المتعدد الوسائط، ويمكن استخدامها مباشرة في العديد من الطرق المختلفة. ميزة واحدة مع استخدام nanodiscs هي صغر حجم nanodisc بالمقارنة مع الجسيمات الشحمية (على سبيل المثال، وعينات يمكن استخدامها مباشرة لكل من تيم وعدم تغيير طبيعة الكهربائي للهلام، كما هو الحال في هذا البروتوكول).
<p clasالصورة = "jove_content"> وقد استخدمت الحويصلات والجسيمات الشحمية وقتا طويلا لفهم وظيفة من البروتينات التفاعل الغشاء. للدراسات الهيكلية والتصور، ومثال على تقرير الهيكلي للبروتين الغشاء في الجسيمات الشحمية متاح 18. ومع ذلك، فقد تم نشر أية عالية الدقة هيكل 3D من بروتين الغشاء monotopic جزءا لا يتجزأ من على غشاء الحويصلية بعد، بقدر ما نعرف. جزيئات الذهب أو الأجسام المضادة يمكن استخدامها لتصور البروتينات ملزمة لالليبوزومات أو حويصلات باستخدام تيم 19. على الرغم من أن هذه التحقيقات هي محددة للغاية، لأنها قد تتداخل مع البروتينات ملزم الغشاء الحجاب الموقع غشاء ملزم أو عن طريق اخفاء المجالات ذات الاهتمام مع أجزاء مرنة. الذهب المسمى أو ربما يمكن أن تحلل البروتينات المعقد الأجسام المضادة على هلام، ولكن هذا من شأنه أن يزيد من تكلفة التجربة.على الرغم من الجسيمات الشحمية هي منصة ممتازة، لا يمكن للمرء أن يكون على يقين من أن البوبulation لديها نسبة معينة من البروتين لكل الحويصلية، وهي الميزة التي يمكن استكشافها عن طريق استخدام nanodiscs 20. في الحويصلية، العوامل المساعدة وركائز يمكن محاصرين في الداخل القابلة للذوبان. والمواد التي هي غشاء للذوبان في مشاركة نفس مصير لكلا النوعين من محاكيات الغشاء. على الرغم من ذلك، حيث أن منطقة طبقة ثنائية أصغر في nanodiscs، مطلوب كمية أقل من مادة لتشبع الأغشية nanodisc.
وكانت وظيفة البروتين فهم من خلال تحديد التركيب الذري أساسيا للعديد من مجالات البحث. وتشمل وسائل لتحديد بنية البروتين الأشعة السينية 21؛ الرنين المغناطيسي النووي (NMR) 22، 23؛ وانتقال المجهر الإلكتروني (تيم) 24 في درجات الحرارة المبردة، cryoEM. القرار الذي cryoEM تمت في الآونة الأخيرة قد تحسنت إلى حد كبير، ويرجع ذلك أساسا إلى استخدام المباشر الإلكترون ديtectors 25 و 26. يتم تصوير الجزيئات في رقيقة، زجاجي الجليد 27 في حالة شبه الأصلي. ولكن نظرا لتباين منخفض الجزيئات البيولوجية، فإنها تصبح من الصعب كشف في حجم مجموعة من 100-200 كيلو دالتون. للحصول على عينات بحجم مناسب، وجمع البيانات يمكن أن تكون وسيلة لإعادة الإعمار جسيم واحد يمكن تطبيقها للحصول على هيكل 28.
ومع ذلك، فإن تحديد بنية البروتين عن طريق تيم هو عملية متعددة الخطوات. وعادة ما يبدأ تقييم عينة monodispersity بواسطة وصمة عار السلبية تيم 29 باستخدام أملاح المعادن الثقيلة مثل phosphotungsten (PT) 30 أو اليورانيوم 31. إعادة بناء نموذج منخفضة الدقة من جزيء ملطخة سلبا يتم عادة ويمكن أن تسفر عن معلومات هامة عن التركيب الجزيئي 29. بالتوازي،جمع البيانات باستخدام cryoEM قد تبدأ. ينبغي توخي الحذر عند تقييم البيانات تيم وصمة عار السلبية لتجنب سوء الفهم من تشكيل الحرفية. واحد الحرفية خاص هو تأثير وصمة عار PT على الدهون الفوسفاتية والجسيمات الشحمية 32، مما أدى إلى تشكيل قضبان طويلة تشبه رزمة من النقود ينظر اليها من الجانب 33. وقد لوحظت هذه "رولو" أو "أكوام" (الرمز الآخرة بأنها "أكوام") في وقت مبكر لHDL 34، وبعد ذلك أيضا لnanodiscs 35.
قد يحدث التراص وإعادة تشكيل الأغشية لأسباب عديدة. على سبيل المثال، يمكن أن تحدثها العوامل المشتركة مثل النحاس ويتضح من التصوير تيم في الأمونيوم كربونات صمة عار 36. وجزء من نسبة الدهون في غشاء في الجسيمات الشحمية احتوى على مجموعة حمض رئيس iminodiacetic محاكاة complexation المعدنية بنسبة EDTA، وبالتالي التراص الجسيمات الشحمية بعد إضافة أيونات النحاس <sحتى الطبقة = "XREF"> 36. التراص يمكن أن يكون أيضا نتيجة لتفاعل البروتين البروتين بواسطة بروتين في أو على طبقات ثنائية الدهون (وصمة عار المستخدمة لم يرد ذكرها) 37. وقد لوحظ تشكيل كومة من الدهون الفوسفاتية من قبل حزب العمال في وقت مبكر. ومع ذلك، فقد تركز العمل في وقت لاحق على إزالة أو إلغاء هذا التشكيل قطعة أثرية 38.
هنا، نقترح طريقة للاستفادة من nanodisc يسببها نابت التراص لدراسة البروتينات ملزم الغشاء بواسطة تيم. وباختصار، فإن بروتين ملزمة على nanodiscs منع nanodiscs من التراص. على الرغم من أن أسباب التراص ليست واضحة، اقترح 39 أن هناك تفاعل الكهربائي بين الدهون الفوسفاتية ومجموعة فسفوريل من حزب العمال، مما تسبب في أقراص التمسك بعضها البعض (الشكل 1A). فرضية وراء بروتوكول لدينا هي أنه عندما يتحد بروتين لnanodisc، معظم سطح فوسفورية ليس عن توافر بليه للتفاعل مع حزب العمال بسبب عائق الفراغية من البروتين. وهذا من شأنه منع تشكيل كومة (الشكل 1B). نتيجتين يمكن استخلاصها. أولا، منع التراص يعني أن البروتين من الفائدة وبد أن الغشاء. ثانيا، مجمع البروتين ND يمكن علاجها مع أساليب المعالجة جسيم واحد القياسية 24 و 40 للحصول على التشكل الخام من المجمع. وعلاوة على ذلك، يحلل بأساليب مثل عدم تغيير طبيعة هلام الكهربائي أو ديناميكية تشتت الضوء لا يمكن أن يؤديها.
لإثبات هذه الفرضية، استخدمنا ملزم غشاء البروتين 5 أكسيجيناز شحمية (5LO)، التي تشارك في العديد من الأمراض الالتهابية 41، 42. يتطلب هذا البروتين 78 كيلو دالتون أيونات الكالسيوم إلى ربط الغشاء 43. على الرغم من هذا الارتباط غشاء وقد درس على نطاق واسع باستخدام الجسيمات الشحميةالصورة = "XREF"> 44، 45، 46 و كسور غشاء 47، وهذه لا يمكن استخدامها لتحليل تيم وتقرير الهيكل.
إعداد nanodiscs يبدأ عن طريق خلط MSP مع الدهون معلق في كوليت المنظفات الصوديوم. بعد مرور فترة الحضانة على الجليد لمدة 1 ساعة، وإزالة المنظفات ببطء من خليط إعادة استخدام الراتنج مكثف. في كثير من الأحيان يتم إجراء هذا النوع من المواد من البوليسترين شكل إلى حبات صغيرة. هم مسعور نسبيا ولها تفضيل قوي لالمنظفات ملزمة مقارنة مع الدهون 48. بعد إزالة حبات مسعور وأداء توضيح باستخدام الطرد المركزي، وتنقية nanodiscs بواسطة اللوني حجم الاستبعاد (SEC). يتم خلط nanodiscs تنقيته مع بروتين monotopic غشاء (والعوامل المساعدة الممكنة) في نسبة متساوي المولية (أو عدة نسب لالمعايرة) ويترك إلى react (15 دقيقة). ويتم تحليلها من قبل تيم من خلال تطبيق ميكرولتر كميات من العينة على وشبكات الكربون المغلفة يتوهج تفريغها ومن ثم عن طريق أداء تلطيخ السلبية مع نابت. نفس العينة من عندما طبقت قسامات إلى شبكات تيم يمكن استخدامها لتحليل من قبل غير تغيير طبيعة أو SDS PAGE هلام الكهربائي، فضلا عن أنواع مختلفة من قياسات النشاط، دون أي تغييرات جوهرية.
يمكن فصل طريقة إلى ثلاثة أجزاء: إعادة تشكيل nanodiscs فارغة، وإعداد المجمعات البروتين nanodisc، وتلطيخ السلبية للتيم من هذه المجمعات. وسيتم تناول كل جزء بشكل منفصل بشأن القيود المفروضة على هذه التقنية، والخطوات الحاسمة، وتعديلات مفيدة.
إ?…
The authors have nothing to disclose.
المؤلفان بالشكر إلى مجلس السويدية بحوث، مجلس مقاطعة ستوكهولم، وصناديق KI لدعمهم. تم إجراء التعبير وتنقية MSP في معهد كارولينسكا / SciLifeLab البروتين مرفق العلوم الأساسية (http://PSF.ki.se). فإن الكتاب أود أيضا أن أشكر الدكتور باسي Purhonen والدكتور ماتيلدا سوبيرغ لتبادل الخبرات الفنية ولما قدموه من مساعدة في الوقت المناسب.
Transmission electron microscope: JEOL2100F | JEOL | ||
CCD camera | Tiez Video and Imaging Processing System GmbH, Germany | ||
Glow discharger | Baltec | ||
TEM grid: 400 mesh | TAAB | GM016/C | |
Size exclusion chromatography: Agilent SEC-5 | Agilent Technologies | 5190-2526 | |
Superdex 200 HR 10/300 | GE Healthcare Life Sciences | 17-5172-01 | |
Plasmid:MSP1E3D1 | Addgene | 20066 | |
Bacteria: BL21DE3 | NEB | C2527H | |
Bacteria: BL21 (DE3) T1R pRARE2 | Protein Science Facility, KI, Solna | ||
Purification Matrix: ATP agarose | Sigma Aldrich | A2767 | |
Purification Matrix: HisTrap HP-5 ml | GE Healthcare Life Sciences | 17-5247-01 | |
Lipid:POPC | Avanti polar lipids | 850457C | 25 mg/ml in chloroform |
Hydrophobic beads: Bio-Beads, SM-2 Resin | Bio-Rad | 1523920 | |
13 mm syringe filter: 0.2 μm | Pall life sciences | PN 4554T | |
Stain: Sodium phosphotungstate tribasic hydrate | Sigma Aldrich | 31648 | |
2-mercaptoethanol | Sigma Aldrich | M3148-250ML | |
Sodium Dodecyl Sulfate (SDS) | Bio-Rad | 161-0301 | |
Protease inhibitor cocktail | Sigma Aldrich | 4693132001 | |
TCEP | Sigma Aldrich | 646547 | |
Detergent: Sodium cholate hydrate | Sigma Aldrich | C6445-10G | |
Sodium Cholate | 500 mM Sodium cholate | Resuspend in miliQ water and store at -20°C | |
Lipid Stock | 50 mM POPC, 100 mM sodium cholate, 20 mM Tris-HCl pH 7.5, 100 mM NaCl | Store at 4°C for a week or Store -80°C for a month, after purging the solution with nitrogen |
|
MSP standard buffer | 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.5 mMEDTA | Store at 4°C | |
Non-Denaturaing Electrophoresis Anode Buffer | 50 mM Bis Tris 50 mM Tricine, pH 6.8 | BN2001 | Purchased from Thermofisher Scientific |
Non-Denaturaing Electrophoresis Cathode Buffer | 50 mM Bis Tris 50 mM Tricine, pH 6.8 0.002% Coomassie G-250 | BN2002 | Purchased from Thermofisher Scientific |
Non-Denaturaing Electrophoresis 4X Sample loading Buffer | 50 mM BisTrispH 7.2, 6N HCl, 50 mM NaCl, 10% (w/v) glycerol, 0.001% Ponceau S | BN2003 | Purchased from Thermofisher Scientific |
Denaturaing Electrophoresis Running Buffer | 25 mM Tris-HCl pH 6.8, 200 mM Glycine, 0.1 % (w/v) SDS | Inhouse receipe | |
Denaturaing Electrophoresis 5X Sample loading Buffer | 0.05 % (w/v) Bromophenolblue, 0.2 M Tris-HCl pH 6.8, 20 % (v/v) glycerol, 10% (w/v) SDS,10 mM 2-mercaptoethanol | Inhouse receipe | |
Terrific broth | Tryptone – 12.0g Yeast Extract – 24.0g 100 mL 0.17M KH2PO4 and 0.72M K2HPO4 Glycerol – 4 mL |
Tryptone, yeast extract and glycerol were prepared to 900 ml and autoclaved seperately. KH2PO4 and K2HPO4 were prepared and autoclaved separately. Both were mixed before using the medium |