The monocyte monolayer assay (MMA) is an in vitro assay that utilizes isolated primary monocytes obtained from mammalian peripheral whole blood to evaluate Fcγ receptor (FcγR)-mediated phagocytosis.
Although originally developed for predicting transfusion outcomes of serologically incompatible blood, the monocyte monolayer assay (MMA) is a highly versatile in vitro assay that can be modified to examine different aspects of antibody and Fcγ receptor (FcγR)-mediated phagocytosis in both research and clinical settings. The assay utilizes adherent monocytes from peripheral blood mononuclear cells isolated from mammalian whole blood. MMA has been described for use in both human and murine investigations. These monocytes express FcγRs (e.g., FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIA) that are involved in immune responses. The MMA exploits the mechanism of FcγR-mediated interactions, phagocytosis in particular, where antibody-sensitized red blood cells (RBCs) adhere to and/or activate FcγRs and are subsequently phagocytosed by the monocytes. In vivo, primarily tissue macrophages found in the spleen and liver carry out FcγR-mediated phagocytosis of antibody-opsonized RBCs, causing extravascular hemolysis. By evaluating the level of phagocytosis using the MMA, different aspects of the in vivo FcγR-mediated process can be investigated. Some applications of the MMA include predicting the clinical relevance of allo- or autoantibodies in a transfusion setting, assessing candidate drugs that promote or inhibit phagocytosis, and combining the assay with fluorescent microscopy or traditional Western immunoblotting to investigate the downstream signaling effects of FcγR-engaging drugs or antibodies. Some limitations include the laboriousness of this technique, which takes a full day from start to finish, and the requirement of research ethics approval in order to work with mammalian blood. However, with diligence and adequate training, the MMA results can be obtained within a 24-h turnover time.
The monocyte monolayer assay (MMA) is an in vitro assay originally developed to better predict blood transfusion outcomes in patients with auto- or alloantibodies to red blood cells (RBCs)1-5. By assessing the effect of anti-RBC antibodies in mediating Fcγ receptor (FcγR)-mediated phagocytosis using this in vitro assay, it is possible to predict the clinical outcome in vivo. Indeed, the MMA has been used successfully to avoid immune destruction of antibody-bound RBCs, despite the transfusion of serologically incompatible blood5. The typical pre-transfusion procedure for compatibility testing, also termed crossmatching, involves serological methods that include typing the patient’s blood for ABO and Rh antigens and screening for the presence of anti-RBC antibodies in the patient6. Blood matched for ABO/Rh is selected, and if antibodies are present, an attempt to identify them is made so that blood for transfusion can be further selected to avoid these antigens. An ideal crossmatch result occurs when all donor blood is serologically compatible with the patient’s blood, which reduces the risk of post-transfusion hemolysis7. However, this system falls short for the small group of patients who have become alloimmunized upon repeated transfusion or pregnancy. These patients produce alloantibodies against specific RBC antigens. Some produce antibodies to antigens of very high frequency in the general population, and thus become progressively more difficult to crossmatch8,9. Adding to the complexity, not all alloantibodies are clinically significant; in other words, the binding of an alloantibody to RBCs detected by a serology test does not necessarily result in hemolysis when antigen-positive, incompatible blood is transfused. The MMA was originally developed to assess the potential clinical significance of serologically incompatible blood in a transfusion setting1-5.
Since extravascular hemolysis of antibody-bound RBCs is known to be mediated by the mononuclear phagocyte system, primary monocytes/macrophages are utilized in the development of diagnostic assays. The first assay to study the interaction of monocytes, RBCs, and antibodies was published in 1975, but the sub-optimal conditions used led only to rosette formation (the binding of RBCs to the periphery of the monocyte), and no phagocytosis was observed10. Significant modifications to the assay were made by several groups, leading to an assay for which the level of phagocytosis of alloantibody-bound RBCs could be correlated to the clinical outcome of hemolysis1-5. Recently, the optimal storage conditions of clinical samples and further optimization of assay conditions were examined to enhance the utility of a clinical MMA crossmatch using autologous patient samples11.
Three other diagnostic techniques have been employed in addition to the MMA in predicting transfusion outcomes: the 51Cr release test, the rosette test, and the chemiluminescence test (CLT). In the 51Cr release test, the patient is injected with 51Cr-labeled donor RBCs, and the half-life of the labeled RBCs is monitored and is predictive of post-transfusion survival or clearance12,13. As this method uses radioactive materials, it is rarely performed anymore. The rosette test involves mixing and incubating monocytes with RBCs and quantifying the level of rosette formation (with no phagocytosis)14. The clinical significance of antibodies in vivo involves active phagocytosis by macrophages found in the spleen and/or the liver; thus, this method does not provide a relevant readout of phagocytosis. The CLT uses luminol to monitor the oxidative burst during monocyte phagocytosis of RBC, since luminol fluoresces blue when oxidized in the phagosome15. This method is good, but contamination by neutrophils can confound the readout. Parallel comparisons have been made to evaluate the sensitivity, practicality, and reproducibility of the four available methods, and both the CLT and MMA were ranked superior16. However, the CLT has been mainly utilized in assessing hemolytic disease of the fetus and newborn (HDFN), and the assay’s optimal pH of 8.0 might compromise the level of phagocytosis11.
In addition to its diagnostic and clinical utility, the MMA has been modified for other research purposes. Indeed, the MMA can not only serve as a functional assay to address discrepancies between serology and biology, it has also been used to retrospectively investigate the cause of hemolysis after intravenous immunoglobulin (IVIG) therapy17. It has also been used to examine the structure-function of chemical inhibitors of FcγR-mediated phagocytosis18-20 and to study the downstream signaling of FcγR-mediated phagocytosis21. In our laboratory, in addition to using a human MMA, we are developing a murine MMA using primary mouse peripheral blood mononuclear cells (PBMCs) and autologous RBCs. The rationale is to screen antibodies that can induce FcγR-mediated phagocytosis as an intermediate to developing an in vivo autoimmune hemolytic anemia (AIHA) mouse model (unpublished data). The various modifications focus on different aspects of the IgG antibody and FcγR interaction that induce phagocytosis.
MMA의 조직 문화와 현미경 모두에 대한 전문 지식을 필요로하는 힘든 기술이다. 성공을 보장하기 위해 몇 가지 중요한 단계가 다음과 같습니다 단핵 세포 단층의 1) 생성; 적혈구의 2) 옵 소닌, 3) 매뉴얼 정량화. 단핵구 단층은 상기 챔버 슬라이드에 강력하게 부착되지 않기 때문에, 생리 학적 pH를 11 시험 법에 걸쳐 유지되어야하며, PBMC를 적절한 수는 배정되어야한다. 부착 된 세포를 방해 할 수 활발한 피펫은 피해야한다. 하나의 방법은 항상 제거 챔버의 동일한 코너의 솔루션을 추가하고, 움직임이 느리고 정상인지 확인한다. 마찬가지로, 여분의 적혈구를 제거하는 마지막 세척 단계 동안, 운동은 천천히 그리고 꾸준히해야한다. 아직도 않은 포식 적혈구의 대부분을 제거하는 동안이 단층에 최소한의 교란을 보장합니다. 불충분 한 세척 수동 …로서하게 오염 적혈구의 높은 배경으로 이어질 것입니다ntification 어렵다. 둘째, R 2 R이 적혈구 충분히 식세포 제어 80-120 평균 식세포 인덱스를 얻기 위해 옵 소닌 화되어야한다. 이것은 원하는 식세포 범위 계산의 용이성 간의 균형을 통계 분석 식세포 적당량 유지 (예를 들어, 5 개 이상으로 단핵구는 적혈구 정확하게 정량화하기 어렵다 포식). 옵 소닌 화의 정도는 IAT에 의해 확인 될 수 있고, 4 이상 3+ 사이의 판독이 필요하다. 이 적혈구 거기 상등액 암적색 바뀌면 세정 동안 과도한 용해 때 또는 폐기되어야하는 R이 R 식세포의 상당한 감소로 인해 스토리지 세포의 노화 실험에서 관찰되는 경우. 실험실 직원 사이의 실험 사이의 수를 비교 특히 마지막으로, 현미경을 사용하여 수동 정량화는 까다로울 수있다. 각 웰에 동일한 필드를 검사함으로써, 또는 단순히 이상의 셀을 계산하여좀더 일관 카운트를 얻을 수있다. 숙련 된 기술자 및 교육 슬라이드 지정된 세트의 사용과 나란히 훈련하는 것이 좋습니다.
MMA의 주요 비판 수동 정량화 단계의 주관적이다. 그러나, 적절한 교육과, 일관성은 서로 다른 카운터를 통해 얻을 수있다. 또 다른 한계는 인간 시료를 처리 데이터의 변화의 원인이고 R이 2 표면 항원을 발현 수준, 단핵 식세포 능력 및 R의 고유 도너 투 도너 차이이다.
다른 대안 기술은 FcγR 매개 식균 작용을 검사 할 수 있습니다. 상업용 키트 대부분은 식균 작용을 모니터링하는 형광 출력을 이용 (예 bioparticles, pH 민감성 형광 단백질, 또는 IgG에 표지 된 형광 라텍스 비즈). 형광 출력의 사용은보다 객관적인 정량화를 제공 않지만, 하나는 사기 필요형광 현미경 유세포뿐만 아니라, 시판 키트에 따라 계속되는 의존성의 사용과 관련된 사용 가능성, 비용 및 교육을 생각 해보자.
마지막으로, 상기 분석은 연구 문제에 따라 변경 될 수있다. 식세포 작용의 억제 약물을 시험 할 때 예를 들어, 단핵구는 사전 처리 될 수 있거나, 약물과 적혈구 옵 소닌 화 (즉, 경쟁 분석) 모두는 공동 – 배양 하였다. 다른 서브 타입, 키메라 항체 또는 재조합 항체의 구조의 다운 스트림 신호는 테스트 될 수있다. 보편적 인 항원 – 널 피 (24)의 개발에 최근 돌파구로, MMA는 식균 작용을 유발의 감소 효과가 실제로 존재 여부를 평가하기 위해 다양한 항체 이러한 항원 널 적혈구의 초기 화면에 이용 될 수있다.
The authors have nothing to disclose.
The authors thank the Canadian Blood Services for a Graduate Fellowship Program Award to T.N.T. This research received financial support from the Canadian Blood Services’ Centre for Innovation, funded by the federal government (Health Canada) and the provincial and territorial ministries of health. The views herein do not reflect the views of the federal, provincial, or territorial governments in Canada.
Acid citrate dextrose (ACD) vacutainers | BD | REF364606 | |
RPMI 1640 | Sigma | R8758 | |
HEPES | Bioshop | HEP003.100 | |
Fetal bovine serum | Multicell | 080150 | |
Gentamicin | Gibco | 15710-64 | |
Ficoll-Paque PLUS | GE | 17-1440-03 | https://www.gelifesciences.com/ |
Phosphate buffered saline | Sigma | D8537 | |
8-chamber slides | Lab-Tek-ll | 154534 | |
R2R2 (cDE/cDE) red blood cells | Canadian Blood Services | Commercially available (e.g. http://www.bio-rad.com/en-ca/product/reagent-red-blood-cells) | |
Polyclonal anti-D from human serum | Gamma Biologics | DIN 02247724 | Can be substituted with commercially available monoclonal anti-D or with Rh immune globulin |
100% methanol | Caledon | 6700-1-42 | |
Polyvinyl alcohol resin | Sigma | P8136 | Can be substituted with commercially available mount |
UltraPure glycerine | Invitrogen | 15514-011 | |
Cover slips | VWR | 48366 067 | |
Novaclone anti-IgG | Immucorgamma | 5461023 | Optional for IAT (http://www.fda.gov/downloads/biologicsbloodvaccines/…/ucm081743.pdf) |