We describe a framework incorporating straightforward biochemical and computational analysis to guide the characterization and crystallization of large coiled-coil domains. This framework can be adapted for globular proteins or extended to incorporate a variety of high-throughput techniques.
Obtaining crystals for structure determination can be a difficult and time consuming proposition for any protein. Coiled-coil proteins and domains are found throughout nature, however, because of their physical properties and tendency to aggregate, they are traditionally viewed as being especially difficult to crystallize. Here, we utilize a variety of quick and simple techniques designed to identify a series of possible domain boundaries for a given coiled-coil protein, and then quickly characterize the behavior of these proteins in solution. With the addition of a strongly fluorescent tag (mRuby2), protein characterization is simple and straightforward. The target protein can be readily visualized under normal lighting and can be quantified with the use of an appropriate imager. The goal is to quickly identify candidates that can be removed from the crystallization pipeline because they are unlikely to succeed, affording more time for the best candidates and fewer funds expended on proteins that do not produce crystals. This process can be iterated to incorporate information gained from initial screening efforts, can be adapted for high-throughput expression and purification procedures, and is augmented by robotic screening for crystallization.
X-ışını kristalografisi yoluyla yapı tayini modern biyolojinin her alanda temel katkılarda bulunmuştur; yaşamı destekleyen ve çeşitli bağlamlarda birbirleriyle nasıl etkileşimde makromoleküllerin bir atom bir görünüm sağlayan; Hastalık ve sağlayan fırsatlar rasyonel hastalığı tedavi etmek için ilaçlar tasarlamaya neden mekanizmaları anlamak için bize izin. Kristalografi uzun makromoleküler yapısını belirlemek için baskın deneysel teknik olmuştur ve şu anda yapısal veritabanı (www.rcsb.org) içinde% 89.3 hesapları vardır. Bu teknik çok yüksek çözünürlükte potansiyeli dahil olmak üzere birçok avantajı vardır, bir boyutlarda geniş, nispeten kolay veri toplama ve makromolekül çözücü yanı sıra ligandlar nasıl etkileşimde görselleştirmek için fırsat makromolekülleri görselleştirmek için yeteneği.
Rekombinant protein ifadesi 1,2, pur sayısız teknolojik gelişmelere rağmenification 3 ve bu sistemleri 4, kristalografik süreçte tek en büyük engel oluşturmak için kullanılan moleküler biyoloji kırınım kaliteli kristaller büyümeye yeteneği kalır. Bu büyük sarmal-coil etki içermeyen protein için özellikle doğrudur olmuştur. Tüm amino asitler kadar 5%, bu çok ortak yapısal özelliği 7 hale sarılmış bobinler 5,6 içinde bulunan olduğu tahmin, ancak bu proteinler çoğu zaman arındırmak ve küresel proteinlerin 8-10 den kristalize etmek daha zordur edilmiştir . Bu ayrıca sarılmış bobin etki genellikle bu nedenle doğru sık kristalleşme için zararlı olduğunu yapılandırılmamış veya esnek dizisinin oluşumunu önlemek için önemlidir bu alanların sınırlarını tahmin, daha büyük bir proteinin kapsamında bulunduğu gerçeğine ile birleşir.
Burada birleştiren kavramsal bir çerçeve sunmak web tabanlı hesaplama experimenta analizleryapısal çalışmalar ve nasıl hazırlamak ve kristalleşme girişimleri öncesinde protein örneklerinin karakterize etmek için protein parçası (ler) nasıl seçileceğini: tezgah l veri kristalografik sürecinin ilk aşamalarında dahil yoluyla kılavuz kullanıcılara yardımcı olmak için. Biz büyük sarmal-coil alanlarını içeren iki protein üzerinde analizimizi odaklanmak, Shroom (SHRM) ve Rho-kinaz (Rock). Her ikisi de halkalaştırılmış halka alanları içerir ve biyolojik olarak alakalı kompleks 11-16 oluşturulması için bilinen bu proteinleri seçilmiştir. Shroom ve Rho-kinaz (Rock), sırasıyla sarılmış-bobinin ~ 200 ve 680 artıkları tahmin edilen, çok sayıda kısımları, yapısal olarak 17-20 karakterize edilmiştir. Burada tarif edilen yöntem, hızlı bir şekilde kristalleşme için müsait olacak halkalı-halka ihtiva eden protein parçalarını tanımlamak için bir iş akışı sağlanmakta, ancak tarif edilen teknikler kolayca en protein veya protein-kompleksleri için uyarlanmış veya yüksek verimli arayışlara dahil etmek üzere modifiye edilebilirches olarak kullanılabilir. Son olarak, bu yöntemler, pahalı olmayan ve hemen hemen tüm seviyeden kullanıcılar tarafından gerçekleştirilebilir.
Burada açıklanan protokol kullanıcı kristalleşme kolaylaştırmak için büyük sarmal-coil proteinler içinde etki alanı sınırları belirlemeye yardımcı olmak için tasarlanmıştır. protokol potansiyel etki alanı sınırları bir dizi oluşturmak için hesaplamalı tahminler ve diğer kaynaklardan gelen verilerin çeşitli bütünsel dahil dayanır. Bu hızlı ve ucuz ve daha bu ilk hipotezleri geliştirmek için kullanılan biyokimyasal deneyler bir dizi tarafından takip edilmektedir. Bu yaklaşımı kul…
The authors have nothing to disclose.
This work was supported by grant NIH R01 GM097204 (APV and JDH). Funding for JHM was supplied by an HHMI Undergraduate Research Summer Fellowship.
BL21(DE3) Rosetta | Emd Millipore | 70954-3 | |
BL21(DE3) Star | ThermoFisher Scientific | C601003 | |
BL21(DE3) Codon Plus | Agilent Technologies | 230245 | |
Lysozyme | Spectrum Chemical Mfg Corp | L3008-5GM | |
Ni-NTA resin | Life Technologies | 25216 | |
SubtilisinA | Spectrum Chemical Mfg Corp | S1211-10ML | |
24 well Cryschem Plate | Hampton research | HR3-160 | |
INTELLI-PLATE 96: | Art Robbins Instruments | 102-0001-03 | |
PEG 3350 | Hampton research | HR2-591 | |
PEG 8000 | Hampton research | HR2-515 | |
PEG 400 | Hampton research | HR2-603 | |
PEG 4000 | Hampton research | HR2-605 | |
pcDNA3.1-Clover-mRuby2 | Addgene | 49089 | |
Overnight Express Autoinduction System 1 | Emd Millipore | 71300 | |
Lysogeny Broth powder | ThermoFisher Scientific | 12795027 |