Summary

Desarrollo de derivados de células madre Las células T reguladoras específicas de antígeno contra la autoinmunidad

Published: November 08, 2016
doi:

Summary

We present here a method to develop functional antigen (Ag)-specific regulatory T cells (Tregs) from induced pluripotent stem cells (iPSCs) for immunotherapy of autoimmune arthritis in a murine model.

Abstract

Las enfermedades autoinmunes se presentan debido a la pérdida de inmunológica auto-tolerancia. Las células T reguladoras (Tregs) son importantes mediadores de la auto-inmunológica tolerancia. Tregs representan aproximadamente el 5 – 10% de la subpoblación de células T CD4 maduro + en ratones y humanos, con aproximadamente 1 – 2% de esas células T reguladoras que circulan en la sangre periférica. células madre pluripotentes inducidas (iPSCs) pueden diferenciarse en células T reguladoras funcional, que tienen un potencial para ser utilizado para terapias basadas en células de enfermedades autoinmunes. A continuación, presentamos un método para desarrollar antígeno (Ag) Tregs específicos de células iPS a partir de (es decir, IPSC-Tregs). El método se basa en la incorporación del factor de transcripción FoxP3 y un receptor de células T Ag-específico (TCR) en iPSCs y luego diferenciar en células que expresan Notch OP9 estromales ligandos delta-como (DL) 1 y DL4. Después de la diferenciación in vitro, las células T reguladoras IPSC-expresan CD4, CD8, CD3, CD25, FoxP3, y Ag-TCR específico y son capaces de responder a la estimulación Ag.Este método se ha aplicado con éxito a la terapia basada en células de la artritis autoinmune en un modelo murino. La transferencia adoptiva de estas Ag-específica IPSC-Tregs en la artritis inducida por Ag (AIA) ratones llevando los tiene la capacidad de reducir la inflamación articular y la inflamación y para prevenir la pérdida de hueso.

Introduction

Autoimmune arthritis is a systemic disease characterized by hyperplasia of synovial tissue and progressive destruction of articular cartilage, bone, and ligaments1. The defective generation or function of Tregs in autoimmune arthritis contributes to chronic inflammation and tissue injury because Tregs play a crucial role in preventing the development of auto-reactive immune cells.

Manipulation of Tregs is an ideal strategy for the development of therapies to suppress inflammation in an Ag-dependent manner. For Treg-based immunotherapy, the specificity of the transferred Tregs is important for the treatment of ongoing autoimmunity2. To exhibit the suppressive activity, Tregs need to migrate and be retained at the afflicted region, which can be directed by the specificity of the TCR for the Ag at that location3. Although polyclonal Tregs may contain a small population containing this Ag specificity from their TCRs, the numbers of these Ag-specific Tregs are usually low. Consequently, cell-based therapies using polyclonal Tregs against autoimmune disorders require adoptive transfers of a large number of Tregs4,5. Because pluripotent stem cells (PSCs) have the ability to develop into any type of cell, Ag-specific PSC-Tregs may prove to be good candidates for Treg-based immunotherapy. Previous studies have shown the successful development of PSC-derived T cells, including Tregs6-8.

Here, we describe a protocol to develop Ag-specific iPSC-Tregs. We further describe a cell-based therapy of autoimmune arthritis in a murine model using such Tregs. This method is based upon genetically modifying murine iPSCs with Ag-specific TCRs and the transcriptional factor FoxP3. The engineered iPSCs then differentiate into Ag-specific Tregs on the OP9 stromal cells expressing Notch ligands DL1, DL4, and MHC-II (I-Ab) molecules in the presence of cytokines mFlt3L and mIL-7. These Ag-specific iPSC-Tregs can produce suppressive cytokines, such as TGF-β and IL-10, when stimulated with the Ag, and adoptive transfer of such Tregs has the ability to suppress AIA development in a murine model. The described protocol can be used to develop stem cell-derived Ag-specific Tregs for potential therapeutic interventions.

Protocol

Todos los experimentos con animales han sido aprobados por el Colegio de la Universidad Estatal de Pensilvania Cuidado de Animales Medicina (IACUC protocolo # 45470) y se realiza de acuerdo con las directrices de la Asociación para la Evaluación y Acreditación de Laboratorio Animal Care. 1. Stem Cell Culture Se incuba una placa de 10 cm con 10 ml de gelatina al 0,1% durante al menos 30 minutos a 37 ° C (incubadora) con el fin de cubrir la placa. Retire la gelatina de…

Representative Results

Como se muestra aquí, en el día 28, Ag-específica Tregs expresa sustancialmente CD3 y Ag-específica TCR, dos marcadores de células T. La población CD3 + + TCRVβ5 expresa CD4. La mayoría de las células CD3 + CD4 + TCRVβ5 + también expresan CD25, CD127, y CTLA-4, que se expresan típicamente en niveles elevados en origen natural, reglas T (nTregs) y en células T que expresan FoxP3 ectópica. FoxP3 expresión en l…

Discussion

En este protocolo, un paso crítico es la diferenciación in vitro de TCR / FoxP3 iPSCs de genes transducidos. In vitro de señalización Notch induce el desarrollo hacia el linaje de células T. Para diferenciar células iPS en CD4 + FoxP3 + células T reguladoras, hemos utilizado las células B OP9-DL1 / DL4 / IA, que MHC II (IA b) moléculas altamente exprés. La mayoría de las iPSCs se diferencian en células CD4 +. Sin embargo, después de la…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Este proyecto fue financiado, en parte, en virtud de subvenciones de los Institutos Nacionales de Salud (R01AI121180, R21AI109239 y K18CA151798), la Asociación Americana de la Diabetes (1-16-IBS-281), y el Departamento de Salud de Pensilvania (Fondos del Acuerdo de Tabaco) a JS

Materials

C57BL/6j mice Jackson Laboratory 664
B6.129S7 Rag1tm1Mom/J Jackson Laboratory 2216
Anti-CD3 (2C11) antibody BD Pharmingen 553058
Anti-CD28 (37.51) antibody BD Pharmingen 553295
Anti-CD4 (GK1.5) antibody Biolegend 100417
Anti-CD8 (53–6.7) antibody Biolegend 100714
Anti-CD25 (3C7) antibody Biolegend 101912
Anti-TCR-β (H57597) antibody Biolegend 109220
Anti-IL10 Biolegend 505010
Anti-TGFβ Biolegend 141402
DMEM Invitrogen ABCD1234
α-MEM Invitrogen A10490-01
FBS Hyclone SH3007.01
Brefeldin A Sigma B7651
Polybrene Sigma 107689
Genejammer Integrated science 204130
ACK Lysis buffer Lonza 10-548E
mFlt-3L peprotech 250-31L
mIL-7 peprotech 217-17
Gelatin Sigma G9391
Paraformaldehyde Sigma P6148-500G Caution: Allergenic, Carcenogenic, Toxic
Permeabilization buffer Biolegend 421002
mBSA Sigma A7906
Ova albumin Avantor 0440-01
CFA Difco 2017014
Tailveiner restrainer Braintree scientific RTV 150-STD

References

  1. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature. 423, 356-361 (2003).
  2. Ferraro, A., et al. Interindividual variation in human T regulatory cells. Proc Natl Acad Sci U S A. 111, E1111-E1120 (2014).
  3. Tang, Q., et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 199, 1455-1465 (2004).
  4. van Herwijnen, M. J., et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A. 109, 14134-14139 (2012).
  5. Wright, G. P., et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc Natl Acad Sci U S A. 106, 19078-19083 (2009).
  6. Schmitt, T. M., et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol. 5, 410-417 (2004).
  7. La Motte-Mohs, R. N., Herer, E., Zuniga-Pflucker, J. C. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood. 105, 1431-1439 (2005).
  8. Lei, F., Haque, R., Weiler, L., Vrana, K. E., Song, J. T lineage differentiation from induced pluripotent stem cells. Cell Immunol. 260, 1-5 (2009).
  9. Lei, F., Haque, R., Xiong, X., Song, J. Directed differentiation of induced pluripotent stem cells towards T lymphocytes. J Vis Exp. , e3986 (2012).
  10. Lei, F., et al. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Res. 71, 4742-4747 (2011).
  11. Haque, R., et al. Programming of regulatory T cells from pluripotent stem cells and prevention of autoimmunity. J Immunol. 189, 1228-1236 (2012).
  12. Chi, V., Chandy, K. G. Immunohistochemistry: paraffin sections using the Vectastain ABC kit from vector labs. J Vis Exp. , (2007).
  13. Lu, L., et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci U S A. 111, E3432-E3440 (2014).
  14. Wu, C., et al. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity. 41, 270-282 (2014).
  15. Di Stasi, A., et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 365, 1673-1683 (2011).
  16. Ramos, C. A., et al. An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells. 28, 1107-1115 (2010).
  17. Haque, R., Lei, F., Xiong, X., Wu, Y., Song, J. FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther. 12, R66 (2010).
  18. van Loenen, M. M., et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A. 107, 10972-10977 (2010).
  19. Kim, Y. C., et al. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood. 125, 1107-1115 (2015).
  20. Himburg, H. A., et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med. 16, 475-482 (2010).

Play Video

Citer Cet Article
Haque, M., Fino, K., Sandhu, P., Song, J. Development of Stem Cell-derived Antigen-specific Regulatory T Cells Against Autoimmunity. J. Vis. Exp. (117), e54720, doi:10.3791/54720 (2016).

View Video