표면의 두 가지 유형의 실리카 나노 입자의 층으로 코팅 된 폴리 에스테르 코팅 된 스틸과 폴리 에스테르가 연구되었다. 양면은 표면의 화학 및 나노 토포 그래피에 상당한 변화를 야기하는 것으로하고 햇빛에 노출시켰다.
금속 표면의 부식 환경에서 유행하고 다른 사람의 사이에 군사, 교통, 항공, 건축, 식품 산업 등 많은 분야에서 큰 관심이다. 폴리 에스테르 및 폴리 에스테르 및 실리카 나노 입자를 모두 포함하는 코팅 (SiO2로 된 NP)가 널리 부식 스틸 하층을 보호하기 위해 사용되어왔다. 본 연구에서는 X 레이 광전자 분광법은 감쇠 전반사 적외 마이크로 분광법 접촉각 측정 광 프로파일 및 원자력 현미경 햇빛에 노출 마이크로 및 나노 크기의 무결성의 변화가 발생할 수 있는지에 대한 통찰을 제공하기 위해 이용 코팅의. 표면 미세 지형에 큰 변화는 프로필 로메 광을 이용하여 검출되지 않았다 그러나, 표면에 나노 유의 한 변화는 원자력 현미경을 사용하여 검출 하였다. X 선 광전자 분광법 분석 감쇠 전반사 적외 마이크로분광 분석 데이터는 에스테르 기의 열화 COO · C · 2 -H, -O · -CO · 라디칼을 형성하도록 자외선에 노광에 의해 발생하였습니다. 분해 과정에서, CO 및 CO2를 또한 제조 하였다.
Environmental corrosion of metals in the environment is both prevalent and costly1-3. A recent study conducted by the Australasian Corrosion Association (ACA) reported that corrosion of metals resulted in a yearly cost of $982 million, which was directly associated with the degradation of assets and infrastructure through metallic corrosion within the water industry4. From an international perspective, the World Corrosion Organization estimated that metallic corrosion was responsible for a direct cost of $3.3 trillion, over 3% of the world’s GDP5. The process of galvanizing as a corrosion preventative method has been widely used to increase the lifespan of steel material6. In humid and subtropical climates, however, water tends to condense into small pockets or grooves within the surface of the galvanized steel, leading to the acceleration of corrosion rates through pit corrosion7,8. Thermosetting polymer coatings based on polyesters have been developed to coat the galvanized steel substrata increasing their ability to withstand humid weathering conditions for items such as satellite dishes, garden furniture, air-conditioning units or agricultural construction equipment9-11. Unfortunately polymer coatings on steel surfaces have been found to be considerably adversely affected by the presence of high levels of ultraviolet (uv) radiation12-14. Coatings comprised of silica nanoparticles (SiO2) spread over a polymer layer have been widely used with a view to increasing their corrosion-, wear-, tear- and degradation-resistance15,16. The tendency of the protective polymeric coatings to form pores and cracks can be reduced by incorporating nanoparticles (NPs), which contribute to the passive obstruction of corrosion initiation17,18. Also, the mechanical stability of the protective polymeric layer can be improved by NPs inclusion. However, these coatings act as passive physical barriers and, in comparison to the galvanization approach, cannot inhibit corrosion propagation actively.
An in-depth understanding of the effect that high-levels of ultraviolet light exposure under humid conditions upon these metal coatings is yet to be obtained. In this paper, a wide range of surface analytical techniques, including X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared micro-spectroscopy (ATR IR), contact angle goniometry, optical profiling and atomic force microscopy (AFM) will be employed to examine the changes in the surface of steel coatings prepared from polyester- and silica nanoparticle-coated polyester (silica nanoparticles/polyester) after exposure to sunlight. Furthermore, the aim of this work is to give a concise, practical overview of the overall characterization techniques to examine weathered samples.
폴리 에스터 코팅은 널리 의한 수분 및 오염 물질의 축적으로 코팅되지 않은 표면에 발생 부식 강철 하층을 보호하기 위해 사용되어왔다. 부식 강재를 보호 할 수 에스테르 코팅의 적용; 그들은 습한 조건에서 자외선의 높은 수준에 노출되는 경우 열대 기후에서 발생 그러나 이러한 코팅의 장기적인 효과는 손상된다. 실리카 나노 입자는 이러한 환경에서 이러한 코팅의 견고성이 실리카 함유 도?…
The authors have nothing to disclose.
Funding from the Australian Research Council Industrial Transformation Research Hubs Scheme (Project Number IH130100017) is gratefully acknowledged. Authors gratefully acknowledge the RMIT Microscopy and Microanalysis Facility (RMMF) for providing access to the characterisation instruments. This research was also undertaken on the Infrared Microscopectroscopy beamline at the Australian Synchrotron, Victoria, Australia.
polyester-coated steel silica nanoparticle-polyester coated steel substrata |
BlueScope Steel | Samples provided by company | |
Millipore PetriSlideTM | Fisher Scientific | PDMA04700 | Storing samples |
Thermo ScientificTM K-alpha X-ray Photoelectron Spectrometer |
Thermo Fisher Scientific, Inc. | IQLAADGAAFFACVMAHV | Acquire XPS spectra |
Avantage Data System | Thermo Fisher Scientific, Inc. | IQLAADGACKFAKRMAVI | Analyse XPS spectra |
A Bruker Hyperion 2000 microscope | Bruker Corporation | Synchrotron integrated instrument | |
Bruker Opus v. 7.2 | Bruker Corporation | ATR-IR analysis software | |
Contact angle goniometer, FTA1000c | First Ten Ångstroms Inc., VA, USA | Measuring the wettability of surfaces | |
FTA v. 2.0 | First Ten Ångstroms Inc., VA, USA | Anaylyzing water contact angle | |
Optical profiler, Wyko NT1100 | Bruker Corporation | Measure surface topography | |
Innova atomic force microscope | Bruker Corporation | Measure surface topography | |
Phosphorus doped silicon probes, MPP-31120-10 | Bruker Corporation | AFM probes | |
Gwyddion software | http://gwyddion.net/ | Software used to measure optical profiling and AFM data |