Due tipi di superfici, acciaio rivestito di poliestere e poliestere rivestito con uno strato di nanoparticelle di silice, sono stati studiati. Entrambe le superfici sono state esposte alla luce solare, che è stato trovato per causare cambiamenti sostanziali nella chimica e nanoscala topografia della superficie.
La corrosione delle superfici metalliche è prevalente nell'ambiente ed è di grande preoccupazione in molte aree, tra cui le industrie militari, trasporti, aviazione, costruzione e cibo, tra gli altri. Poliestere e rivestimenti contenenti sia poliestere che nanoparticelle di silice (SiO 2 NP) sono stati ampiamente utilizzati per proteggere substrati acciaio dalla corrosione. In questo studio, abbiamo utilizzato raggi X spettroscopia fotoelettronica, riflessione totale attenuata infrarossi micro-spettroscopia, misure di angolo di contatto dell'acqua, profilatura ottica e la microscopia a forza atomica per fornire una panoramica su come l'esposizione alla luce solare può causare cambiamenti nella micro e nanoscala integrità dei rivestimenti. Nessun cambiamento significativo nella superficie micro-topografia è stato rilevato usando profilometria ottica, tuttavia, sono stati rilevati statisticamente significativi cambiamenti su scala nanometrica sulla superficie usando la microscopia a forza atomica. Analisi della spettroscopia fotoelettronica a raggi X e micro- infrarossi attenuato riflessione totaledati spettroscopici hanno rivelato che la degradazione dei gruppi esterei era verificato attraverso l'esposizione a luce ultravioletta per formare COO ·, -H 2 C °, -O ·, -CO · radicali. Durante il processo di degradazione, CO e CO 2 sono state anche prodotte.
Environmental corrosion of metals in the environment is both prevalent and costly1-3. A recent study conducted by the Australasian Corrosion Association (ACA) reported that corrosion of metals resulted in a yearly cost of $982 million, which was directly associated with the degradation of assets and infrastructure through metallic corrosion within the water industry4. From an international perspective, the World Corrosion Organization estimated that metallic corrosion was responsible for a direct cost of $3.3 trillion, over 3% of the world’s GDP5. The process of galvanizing as a corrosion preventative method has been widely used to increase the lifespan of steel material6. In humid and subtropical climates, however, water tends to condense into small pockets or grooves within the surface of the galvanized steel, leading to the acceleration of corrosion rates through pit corrosion7,8. Thermosetting polymer coatings based on polyesters have been developed to coat the galvanized steel substrata increasing their ability to withstand humid weathering conditions for items such as satellite dishes, garden furniture, air-conditioning units or agricultural construction equipment9-11. Unfortunately polymer coatings on steel surfaces have been found to be considerably adversely affected by the presence of high levels of ultraviolet (uv) radiation12-14. Coatings comprised of silica nanoparticles (SiO2) spread over a polymer layer have been widely used with a view to increasing their corrosion-, wear-, tear- and degradation-resistance15,16. The tendency of the protective polymeric coatings to form pores and cracks can be reduced by incorporating nanoparticles (NPs), which contribute to the passive obstruction of corrosion initiation17,18. Also, the mechanical stability of the protective polymeric layer can be improved by NPs inclusion. However, these coatings act as passive physical barriers and, in comparison to the galvanization approach, cannot inhibit corrosion propagation actively.
An in-depth understanding of the effect that high-levels of ultraviolet light exposure under humid conditions upon these metal coatings is yet to be obtained. In this paper, a wide range of surface analytical techniques, including X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared micro-spectroscopy (ATR IR), contact angle goniometry, optical profiling and atomic force microscopy (AFM) will be employed to examine the changes in the surface of steel coatings prepared from polyester- and silica nanoparticle-coated polyester (silica nanoparticles/polyester) after exposure to sunlight. Furthermore, the aim of this work is to give a concise, practical overview of the overall characterization techniques to examine weathered samples.
poliesteri sono stati ampiamente utilizzati per proteggere substrati di acciaio dalla corrosione che si verificherebbe su una superficie non rivestita dovuta all'accumulo di umidità e inquinanti. L'applicazione di rivestimenti poliestere può proteggere l'acciaio dalla corrosione; tuttavia l'efficacia a lungo termine di questi rivestimenti è compromessa se sono esposti ad elevati livelli di luce ultravioletta in condizioni di umidità, come avviene nei climi tropicali. nanoparticelle di silice possono …
The authors have nothing to disclose.
Funding from the Australian Research Council Industrial Transformation Research Hubs Scheme (Project Number IH130100017) is gratefully acknowledged. Authors gratefully acknowledge the RMIT Microscopy and Microanalysis Facility (RMMF) for providing access to the characterisation instruments. This research was also undertaken on the Infrared Microscopectroscopy beamline at the Australian Synchrotron, Victoria, Australia.
polyester-coated steel silica nanoparticle-polyester coated steel substrata |
BlueScope Steel | Samples provided by company | |
Millipore PetriSlideTM | Fisher Scientific | PDMA04700 | Storing samples |
Thermo ScientificTM K-alpha X-ray Photoelectron Spectrometer |
Thermo Fisher Scientific, Inc. | IQLAADGAAFFACVMAHV | Acquire XPS spectra |
Avantage Data System | Thermo Fisher Scientific, Inc. | IQLAADGACKFAKRMAVI | Analyse XPS spectra |
A Bruker Hyperion 2000 microscope | Bruker Corporation | Synchrotron integrated instrument | |
Bruker Opus v. 7.2 | Bruker Corporation | ATR-IR analysis software | |
Contact angle goniometer, FTA1000c | First Ten Ångstroms Inc., VA, USA | Measuring the wettability of surfaces | |
FTA v. 2.0 | First Ten Ångstroms Inc., VA, USA | Anaylyzing water contact angle | |
Optical profiler, Wyko NT1100 | Bruker Corporation | Measure surface topography | |
Innova atomic force microscope | Bruker Corporation | Measure surface topography | |
Phosphorus doped silicon probes, MPP-31120-10 | Bruker Corporation | AFM probes | |
Gwyddion software | http://gwyddion.net/ | Software used to measure optical profiling and AFM data |