Summary

饲养果蝇<em>果蝇</em>在无菌和悉生条件

Published: July 30, 2016
doi:

Summary

提出了一种用于无菌和限菌条件下饲养果蝇的方法。飞胚dechorionated在次氯酸钠,无菌转移到无菌的饮食,并在密闭容器中饲养。接种饮食和胚胎与细菌导致限菌协会,和细菌的存在是通过电镀全身果蝇匀浆证实。

Abstract

The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood.

Introduction

大多数动物密切与细菌('微生物')从出生到死亡1有关。免费微生物('无菌')和微生物相关的(“传统”)的动物的比较表明微生物影响动物健康的各个方面,包括代谢,营养,血管,肝脏,呼吸系统,免疫,内分泌和神经功能2。果蝇果蝇是用于理解许多微生物3,4的存在下这些方法的并为研究对动物健康5,6-菌群影响的关键模式。没有细菌种类存在于每一个个体(“核心”),但醋酸乳酸杆菌数字都占据主导地位实验室饲养和野生捕捞D的微生物果蝇 。其他Acetobacteraceae(包括Komagataeibacter葡萄糖酸 ), 菲尔米cutes(如肠球菌明串珠菌 )和肠杆菌科细菌无论是在低丰度经常出现在果蝇中的个人,或不定期出现在高丰度7-12。

果蝇和哺乳动物的微生物是内和跨世代14,19见异思迁。测量微生物相关的特征时,菌群世态炎凉会导致表型的噪音。例如,Acetobacteraceae影响脂质(甘油三酯)存储在果蝇 15-18。如果Acetobacteraceae是比另外19一小瓶的苍蝇更丰富,同基因苍蝇可以有不同的表型20。自1960年代以来,一种用于小鼠14菌群世态炎凉的问题的解决方案已经在实践中,通过引入定义8优势微生物物种社会的乳鼠每一代新产品(改变Schaedler菌群)确保每个小狗暴露于小鼠菌群的同一主要成员。即使当菌群不研究32的主要目标,并设置先例,以确保密钥的微生物在各种实验条件下的存在于微生物群组成这种做法控制。

上定义果蝇营养微生物的影响下,用于导出无菌飞线几个协议已被开发,包括胚胎次氯酸钠dechorionation(无论是衍生从头每一代或通过转移到无菌的饮食的世代保持)和抗生素治疗13。有益处的不同方法,如方便与快捷为抗生素治疗和串行传输,相对于与从头 dechorionation混杂变量( 例如 ,卵密度,残留污染微生物,脱靶抗生素效果)的更大的控制。不管该方法的准备,出台规定微生物物种对无菌胚胎允许果蝇的文化与自定义(“悉生')社区。可替代地,模仿使用Schaedler菌群,该社区可以接种到常规的鸡蛋(以下步骤6-7只),以确保在每个小瓶特质影响微生物的存在,并避免菌群反复无常的并发症。在这里,我们描述了协议用 ​​于通过胚胎从头 dechorionation提高无菌和限菌果蝇 ,并确认导入或污染微生物类群的存在。

Protocol

1.细菌培养(开始采摘〜鸡蛋前1周) 制备改良的MRS 20(MMRS)板和肉汤管( 表1)。倾20毫升MMRS琼脂到每个百毫米培养皿并冷却/干燥过夜,和5ml MMRS肉汤分为18 mm试管。 条纹醋pomorum,A. 热带 , 短乳杆菌 ,和L.植物上MMRS琼脂平板上。孵育醋杆菌在30℃下过夜。通过在密封前用二氧化碳将所述板在密封容器中,并驱孵育?…

Representative Results

无菌蝇饲养成功是没有从D的全身homogenizations CFU的隔离证实果蝇成虫( 图1)。或者,如果镀覆匀浆得到的菌落,小瓶被污染并应该被丢弃。为限菌苍蝇,四个细菌菌株是从5成年男性池隔离,以表明其与成蝇( 图1)相关联的总活菌的CFU的差异。每个细菌物种具有不同的形态,并可以在视觉上加以区分( 图2)。如果没有?…

Discussion

此处所描述的方法是几种方法用于胚胎dechorionation 8,11,18,25,26,27之一,饲养无菌蝇,包括无菌的成年人18,27的串行传输或抗生素治疗13,18的替代方法在一起。其他dechorionation方法包括乙醇洗涤,减少11,25,26或延长8次氯酸盐治疗。不同的洗涤步骤可以帮助饲养不同蝇基因型:在先前的研究中最〜的饲养时如这里概述(无乙醇洗涤)100 果蝇基因型无菌?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

该协议的一些细节与亚当博士布森,谁也对稿件提供了有益的意见的协助下进行了优化。这项工作是由该基金会为美国国立卫生研究院的支持(FNIH)授权号R01GM095372(JMC,A(CN)W,AJD和AED)。 FNIH授权号码1F32GM099374-01(PDN),和杨百翰大学的启动资金(江铃汽车,MLK,MV)。出版费用由生命科学杨百翰大学学院和植物和野生动物科学系的支持。

Materials

Brewer's Yeast MP Biomedicals, LLC. 903312 http://www.mpbio.com/product.php?pid=02903312
Glucose Sigma Aldrich 158968-3KG http://www.sigmaaldrich.com/catalog/product/aldrich/158968?lang=en&region=US
Agar Fisher–Lab Scientific fly802010 https://www.fishersci.com/shop/products/drosophila-agar-8-100mesh-10kg/nc9349177
Welch's 100% Grape Juice Concentrate Walmart or other grocery store 9116196 http://www.walmart.com/ip/Welch-s-Frozen-100-Grape-Juice-Concentrate-11.5-oz/10804406
Cage: 32 oz. Translucent Round Deli Container Webstaurant Store 999L5032Y http://www.webstaurantstore.com/newspring-delitainer-sd5032y-32-oz-translucent-round-deli-container-24-pack/999L5032Y.html
Translucent Round Deli Container Lid Webstaurant Store 999YNL500 http://www.webstaurantstore.com/newspring-delitainer-ynl500-translucent-round-deli-container-lid-60-pack/999YNL500.html
Stock Bottles Genesee Scientific 32-130 https://geneseesci.com/shop-online/product-details/?product=32-130
Droso-Plugs Genesee Scientific 49-101 https://geneseesci.com/shop-online/product-details/?product=49-101
Nylon Mesh Genesee Scientific 57-102  https://geneseesci.com/shop-online/product-details/715/?product=57-102
Plastic Bushing Home Depot 100343125 http://www.homedepot.com/p/Halex-2-1-2-in-Rigid-Insulated-Plastic-Bushing-75225/100343125
Specimen Cup MedSupply Partners K01-207067 http://www.medsupplypartners.com/covidien-specimen-containers.html
Repeater M4 Eppendorf 4982000322 https://online-shop.eppendorf.us/US-en/Manual-Liquid-Handling-44563/Dispensers–Burettes-44566/Repeater-M4-PF-44619.html
50 ml Centrifuge Tubes Laboratory Product Sales TR2003 https://www.lpsinc.com/Catalog4.asp?catalog_nu=TR2003
Food Boxes USA Scientific 2316-5001 http://www.usascientific.com/search.aspx?find=2316-5001
Lysing Matrix D Bulk MP Biomedicals, LLC. 116540434 http://www.mpbio.com/search.php?q=6540-434&s=Search
Filter Pipette Tips, 300μl USA Scientific 1120-9810 http://www.usascientific.com/search.aspx?find=1120-9810
Petri Dishes Laboratory Product Sales M089303 https://www.lpsinc.com/Catalog4.asp?catalog_nu=M089303
Ethanol Decon Laboratories, INC. 2701 http://www.deconlabs.com/products.php?ID=88
Paintbrush Walmart 5133 http://www.walmart.com/ip/Chenille-Kraft-5133-Acrylic-Handled-Brush-Set-Assorted-Sizes-colors-8-Brushes-set/41446005
Forceps Fisher 08-882 https://www.fishersci.com/shop/products/fisherbrand-medium-pointed-forceps-3/p-128693
Household Bleach (6-8% Hypochlorite) Walmart 550646751 http://www.walmart.com/ip/Clorox-Concentrated-Regular-Bleach-121-fl-oz/21618295
Universal Peptone Genesee Scientific 20-260 https://geneseesci.com/shop-online/product-details/?product=20-260
Yeast Extract  Fisher Scientific BP1422-500 https://www.fishersci.com/shop/products/fisher-bioreagents-microbiology-media-additives-yeast-extract-3/bp1422500?matchedCatNo=BP1422500
Dipotassium Phosphate Sigma Aldrich P3786-1KG http://www.sigmaaldrich.com/catalog/search?term=P3786-1KG&interface=All&N=0&mode=match%20partialmax&lang=en&region=US&focus=product
Ammonium Citrate Sigma Aldrich 25102-500g http://www.sigmaaldrich.com/catalog/search?term=25102-500g&interface=All&N=0&mode=match%20partialmax&lang=en&region=US&focus=product
Sodium Acetate VWR 97061-994 https://us.vwr.com/store/catalog/product.jsp?catalog_number=97061-994
Magnesium Sulfate Fisher Scientific M63-500 https://www.fishersci.com/shop/products/magnesium-sulfate-heptahydrate-crystalline-certified-acs-fisher-chemical-3/m63500?matchedCatNo=M63500
Manganese Sulfate Sigma Aldrich 10034-96-5 http://www.sigmaaldrich.com/catalog/search?term=10034-96-5&interface=CAS%20No.&N=0&mode=match%20partialmax&lang=en&region=US&focus=product
MRS Powder Sigma Aldrich 69966-500G http://www.sigmaaldrich.com/catalog/product/sial/69966?lang=en&region=US
96 Well Plate Reader BioTek (Epoch)  NA http://www.biotek.com/products/microplate_detection/epoch_microplate_spectrophotometer.html
1.7 ml Centrifuge Tubes USA Scientific 1615-5500 http://www.usascientific.com/search.aspx?find=1615-5500
Filter Pipette Tips, 1000μl USA Scientific 1122-1830 http://www.usascientific.com/search.aspx?find=1122-1830
96 Well Plates Greiner Bio-One 655101 https://shop.gbo.com/en/usa/articles/catalogue/article/0110_0040_0120_0010/13243/
Ceramic Beads MP Biomedicals, LLC. 6540-434 http://www.mpbio.com/product.php?pid=116540434
Tissue Homogenizer MP Biomedicals, LLC. 116004500 http://www.mpbio.com/product.php?pid=116004500
Class 1 BioSafety Cabinet Thermo Scientific  Model 1395 http://www.thermoscientific.com/en/product/1300-series-class-ii-type-a2-biological-safety-cabinet-packages.html

References

  1. McFall-Ngai, M. J. Giving microbes their due–animal life in a microbially dominant world. J Exp Biol. 218, 1968-1973 (2015).
  2. Smith, K., McCoy, K. D., Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 19 (2), 59-69 (2007).
  3. Rieder, L. E., Larschan, E. N. Wisdom from the fly. Trends Genet. 30 (11), 479-481 (2014).
  4. Arias, A. M. Drosophila melanogaster and the development of biology in the 20th century. Methods Mol Biol. 420, 1-25 (2008).
  5. Lee, W. J., Brey, P. T. How microbiomes influence metazoan development: insights from history and Drosophila modeling of gut-microbe interactions. Annu Rev Cell Dev Biol. 29, 571-592 (2013).
  6. Erkosar, B., Leulier, F. Transient adult microbiota, gut homeostasis and longevity: novel insights from the Drosophila model. FEBS Lett. 588 (22), 4250-4257 (2014).
  7. Chandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A., Kopp, A. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet. 7 (9), e1002272 (2011).
  8. Broderick, N. A., Buchon, N., Lemaitre, B. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology. MBio. 5 (3), 01117 (2014).
  9. Wong, C. N., Ng, P., Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol. 13 (7), 1889-1900 (2011).
  10. Staubach, F., Baines, J. F., Kunzel, S., Bik, E. M., Petrov, D. A. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One. 8 (8), e70749 (2013).
  11. Brummel, T., Ching, A., Seroude, L., Simon, A. F., Benzer, S. Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci U S A. 101 (35), 12974-12979 (2004).
  12. Cox, C. R., Gilmore, M. S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun. 75 (4), 1565-1576 (2007).
  13. Ridley, E. V., Wong, A. C., Douglas, A. E. Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster. Appl Environ Microbiol. 79 (10), 3209-3214 (2013).
  14. Rogers, G. B., et al. Functional divergence in gastrointestinal microbiota in physically-separated genetically identical mice. Sci Rep. 4, 5437 (2014).
  15. Chaston, J. M., Newell, P. D., Douglas, A. E. Metagenome-wide association of microbial determinants of host phenotype in Drosophila melanogaster. MBio. 5 (5), 01631-01714 (2014).
  16. Huang, J. H., Douglas, A. E. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biology Letters. , (2015).
  17. Shin, S. C., et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 334 (6056), 670-674 (2011).
  18. Storelli, G., et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14 (3), 403-414 (2011).
  19. Wong, A. C., Chaston, J. M., Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7 (10), 1922-1932 (2013).
  20. Newell, P. D., Douglas, A. E. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol. 80 (2), 788-796 (2014).
  21. Broderick, N. A., Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes. 3 (4), 307-321 (2012).
  22. Ren, C., Webster, P., Finkel, S. E., Tower, J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 6 (2), 144-152 (2007).
  23. Wong, A. C., et al. The Host as the Driver of the Microbiota in the Gut and External Environment of Drosophila melanogaster. Appl Environ Microbiol. 81 (18), 6232-6240 (2015).
  24. Dobson, A. J., et al. Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nat Commun. 6, 6312 (2015).
  25. Bakula, M. The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J Invertebr Pathol. 14 (3), 365-374 (1969).
  26. Ryu, J. H., et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science. 319 (5864), 777-782 (2008).
  27. Blum, J. E., Fischer, C. N., Miles, J., Handelsman, J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio. 4 (6), 00860 (2013).
  28. Bitner-Mathe, B. C., Klaczko, L. B. Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density. Genetica. 105 (2), 203-210 (1999).
  29. Edward, D. A., Chapman, T. Sex-specific effects of developmental environment on reproductive trait expression in Drosophila melanogaster. Ecol Evol. 2 (7), 1362-1370 (2012).
  30. Ridley, E. V., Wong, A. C., Westmiller, S., Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One. 7 (5), e36765 (2012).
  31. Newell, P. D., et al. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Front Microbiol. 5, 576 (2014).
  32. Dewhirst, F. E., et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol. 65 (8), 3287-3292 (1999).
  33. Min, K. T., Benzer, S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A. 94 (20), 10792-10796 (1997).

Play Video

Citer Cet Article
Koyle, M. L., Veloz, M., Judd, A. M., Wong, A. C., Newell, P. D., Douglas, A. E., Chaston, J. M. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions. J. Vis. Exp. (113), e54219, doi:10.3791/54219 (2016).

View Video