Here we describe a protocol for measuring and analyzing temperature responses in the olfactory bulb of Xenopus laevis. Olfactory receptor neurons and mitral cells are differentially stained, after which calcium changes are recorded, reflecting a sensitivity of some neural networks in the bulb to temperature drops induced at the nose.
The olfactory system, specialized in the detection, integration and processing of chemical molecules is likely the most thoroughly studied sensory system. However, there is piling evidence that olfaction is not solely limited to chemical sensitivity, but also includes temperature sensitivity. Premetamorphic Xenopus laevis are translucent animals, with protruding nasal cavities deprived of the cribriform plate separating the nose and the olfactory bulb. These characteristics make them well suited for studying olfaction, and particularly thermosensitivity. The present article describes the complete procedure for measuring temperature responses in the olfactory bulb of X. laevis larvae. Firstly, the electroporation of olfactory receptor neurons (ORNs) is performed with spectrally distinct dyes loaded into the nasal cavities in order to stain their axon terminals in the bulbar neuropil. The differential staining between left and right receptor neurons serves to identify the γ-glomerulus as the only structure innervated by contralateral presynaptic afferents. Secondly, the electroporation is combined with focal bolus loading in the olfactory bulb in order to stain mitral cells and their dendrites. The 3D brain volume is then scanned under line-illumination microscopy for the acquisition of fast calcium imaging data while small temperature drops are induced at the olfactory epithelium. Lastly, the post-acquisition analysis allows the morphological reconstruction of the thermosensitive network comprising the γ-glomerulus and its innervating mitral cells, based on specific temperature-induced Ca2+ traces. Using chemical odorants as stimuli in addition to temperature jumps enables the comparison between thermosensitive and chemosensitive networks in the olfactory bulb.
Over the last years, temperature sensitivity has no longer been described as a somesthetic sense only, but also as a physiological function relevant for the olfactory system. In rodents, the main olfactory bulb receives input from the Grueneberg ganglion (GG), an organ in the nasal cavity, consisting of thermosensitive neurons. GG neurons respond to cool temperatures1 as well as to chemical stimuli, and their chemosensitivity is modulated by temperature fluctuations2. These observations suggest that the olfactory bulb may integrate chemical and temperature information collected at the nose. In order to explore this hypothesis, we present here a set of experiments enabling the detection of temperature responses in the olfactory bulb of non-transgenic animals, using the Xenopus laevis larva as a model. The organization of the olfactory system in these animals closely resembles that of mammals. The olfactory receptor neurons of premetamorphic X. laevis terminate in tufts, and make synaptic contacts with the dendrites of second-order neurons, the mitral cells. Pre- and postsynaptic fibers intermingle and form skein-like neuropil structures called glomeruli3. The abundant synapses of the glomerular layer represent the first processing center of olfactory information. Mitral cells further integrate the sensory input and convey it to higher olfactory areas.
We have developed a protocol combining electroporation of olfactory receptor neurons (ORNs) with calcium-sensitive and non-sensitive dyes followed by bolus loading of the postsynaptic network of glomeruli and mitral cells. The staining by electroporation of two spectrally distinct dyes loaded in the nasal cavities serves to single out the γ-glomerulus3 through its bilateral innervation by ORNs from both olfactory epithelia. Thus, the location of the γ-glomerulus is identified prior to further measurements. Subsequently, bolus loading4 with Fluo-8 acetoxymethyl (Fluo-8 AM) is carried out in a volume comprising the γ-glomerulus. Imaging calcium changes with fast confocal microscopy allows the visualization of temperature responses in the 3D neuropil surrounding the γ-glomerulus, a unique temperature-sensitive glomerulus in this system5. Mitral cells innervating this specific structure can also be identified by their Ca2+ signals responsive to induced temperature drops. Next, activity correlation imaging6 uses the specific Ca2+ traces of these cells to reveal the dendritic morphology of thermosensitive mitral cells. Alternating repeated applications of cold Ringer solution and chemical odorants in one measurement can be used to visualize the mitral cell networks for odor and temperature processing surrounding the γ-glomerulus and identify potential overlaps. To unambiguously assign the responses to either the chemical or the temperature stimulus, we constantly monitor temperature at the olfactory epithelium.
本文所提出的方法的目标是在记录温度处理在爪蟾的嗅球蟾蝌蚪。协议污渍第一和嗅球二阶神经元和提供了其中的嗅觉系统仍然主要完好样品制备。因此,温度敏感型γ-肾小球的活化可以监测和其化学 – 敏感相邻肾小球比较。此肾小球的独特双边支配由细胞电穿孔用频谱不同的染料显现。此外,大丸剂负荷允许僧帽细胞跨越嗅球内大量的染色。神经元网络处理温度诱导信号是通过服用钙测量反复刺激应用程序,随后与分析相关的活动成像数据显示。
该协议突出了两个先进的染色PROCE的既定程序,两者都需要谨慎操作和实践,以达到令人满意的和可重复的结果。在电穿孔动物的任何伤害已被避免,在电极定位成鼻孔时尤其如此。理想情况下,应该发生的嗅觉上皮细胞没有任何联系。请注意,动物是电穿孔手术后仍然生活和他们的恢复时间必须考虑在内。如果染色剩一个圆形电穿孔,它可以发生取决于类型中使用的染料的后过弱,其强度可通过在鼻孔提高染料浓度得到提高。由于右旋糖酐耦合分子通过多种机制,包括缓慢的轴突运输(在1-2毫米/10天速度)和被动扩散运输,另一种选择是牺牲动物前等待电后48小时。另外,电可以恢复一天后重复。
jove_content“>丸装载是因为染料的量的一个关键步骤进入僧帽细胞是困难的调节和取决于各种参数,如该应用程序的枪头大小和位置。共聚焦荧光显微镜下监测过程证明是有用调节染料应用的持续时间,从而产生一个横穿制剂类似染色的结果。此外,先前电蝌蚪应该使用通过识别小簇的位置(包括γ-肾小球),以确定用于染料应用的最佳位置,最在测量过程中的关键步骤是,以避免样品的两个移位和漂白,移位可以通过仔细定位显微镜下林格氏流是可以避免的。至于限制所关注的区域的漂白,测量时间应减少到基本。与钙敏感染料丸药装载染色仅提供了非常相比之下有限,因为健康细胞通常患有低钙血症,从而表现出微弱的基础荧光。申请活动相关成像绕过基于类似的钙信号的活动和亮点结构产生反差此限制。这个采集后分析方法计算的兴趣(基准迹线)的选定区域中的钙信号和在3D体积的每个单独的像素之间的相关性因子。因此,极力得到的结果取决于所选择的参考曲线的活动模式。如果主要焦点是形象化僧帽细胞神经支配的图案,从自发的神经元活动导出的参考信号是优选的,并且选择最活跃僧帽细胞会产生最好的结果。为揭示僧帽细胞的化疗或热敏感的网络中,只包含要么组氨酸或冷林格反应参考曲线应选择。整个肾小球邻的选择ř僧帽细胞胞体作为关注可能并不总是提供一个明确的参考曲线,特别是如果响应于两个不同的刺激的结构躺在彼此的顶部区域。在这种情况下,常常是有用选择肾小球或细胞体作为感兴趣区域的较小的区域。
在过去的几十年中,电穿孔已经被描述为一种有效的方法来染色单个或多个小区11,12。此处它被用于特异性标记嗅觉受体神经元。葡聚糖共轭分子,得到最高的效率,而对于非钙敏感性染料,选择范围很广,包括通常在荧光显微镜13中使用的完整光谱。然而,这是成功电穿孔到嗅觉受体神经元钙敏感染料是在限定于钙绿葡聚糖的瞬间,而且如果仍的Fluo-4的葡聚糖市售的。此外,录音主要针对superficia仅嗅球的腹面上升层中,由于快速的测量技术的穿透深度是有限的。双光子成像可以部分地克服这一限制,但通常缺乏速度,并进一步限制可选择钙敏感染料的量。
我们在这里所描述的协议在嗅球测定温度引起的活性。脑中神经毡被扫描成一个三维体积来可视化涉及温度的嗅觉处理复杂的蜂窝网络。测定温度引起的活性嗅球已经非常最近报道5和需要特别定制的程序组合不同的技术。以上提出的技术的主要资产是数百细胞的三维成像是在大多数嗅觉系统保持完好的准备。这些优点放高要求的染色技术以及大脑p赔偿和成像。例如,细胞电穿孔和丸药加载命中大量细胞在嗅觉上皮和球,从而使完全蜂窝网络的可视化。此外,通过推注装载代替遗传编码荧光团的化学指标的递送使得能够在潜在的较大的组的物种的测量。像带AM染料浴温育其他替代,其中严重损坏嗅球片主要工作,留下完整的组织的只有几百微米。相比之下,在我们的协议中使用的整个装载制备确保例如使γ肾小球的双边支配保持不变,因此,录音采取在一个仍然有效的系统。最后,成像本身由线照明显微镜允许采集3D体积的完成。线照明显微镜是提供尽可能高的采集速率6共聚焦技术之一</ SUP>所必需的覆盖嗅球的很大一部分。可以使用较慢的采集系统,但有缺点,即所记录的卷的大小必须减小。近年来,其他方法进行快速图像获取已被开发,并且可以作为替代品使用14,15。然而,线照明显微镜仍然获得足够两者速度和分辨率的最简单的方法之一。这里如下一些信息作为选择适当的成像设置的指导方针。由于钙成像是从厚脑制剂中完成,设置应该提供体面共焦和目标应具有1.0或更高的数值孔径。对于一个基准点,用线照明显微镜拍摄的记录对应于所用的标准激光扫描显微镜具有0.5-1通风单元的针孔大小的图像。快速的采集速度是可取的。用厚度为20μm的体积覆盖至少5升艾尔斯,观点的100微米×100微米的横向场并为0.5μm或更小的像素尺寸应在每堆1 Hz的最小速度进行扫描。减少共焦可以提高计数的光子的数量,从而允许更快的收购如果有必要,但现在的记录更失焦光的缺点。然而,由于这样的方法增加了光学片的厚度,它实际上可以方便的ACI 6的应用后树突通过不同的z平面上的跟踪。
必要的工具,广泛地研究高温处理嗅球网络在此呈现。温度引起的活性是通过钙敏感的染料和两到达和来自γ-肾小球出发信号记录在第一和第二阶的神经元。此外,在何种程度上个别僧帽细胞处理化学和温度信息可以被评估。由于准备LEAVES嗅球完好,在嗅觉处理双边支配的作用,可以进一步研究。该过程也揭示是否以及如何热电偶和chemoinformation重叠嗅网5编码有用。最后,上述技术不限于在嗅球的温度响应的研究,但可应用于嗅觉系统的更一般的评价,特别是在大的三维体积蜂窝处理网络。丸药装载和活动相关成像是有力工具观察比较几十神经元的活性,这使得它们适用于不同的大脑的网络16。
The authors have nothing to disclose.
This project was funded by the DFG Excellence Cluster 171, the Center for Nanoscale Microscopy and Molecular Physiology of the Brain, the Bernstein Center for Computational Neuroscience and the ENC-Network, an Erasmus Mundus Joint Doctoral Program. The authors thank Stephan Junek, Mihai Alevra and Guobin Bao for providing MATLAB codes and custom-written programs for image evaluation and data analysis.
Reagents | |||
Sodium chloride | Merck Millipore | 1064040500 | |
Potassium chloride | Merck Millipore | 1049360250 | |
Calcium chloride dihydrate | Merck Millipore | 1023820250 | |
Magnesium chloride hexahydrate | Merck Millipore | 1058330250 | |
D(+)-Glucose | Merck Millipore | 1083371000 | |
Sodium pyruvate | Sigma-Aldrich | P2256 | |
HEPES | Merck Millipore | 1101100250 | |
Calcium Green 10 kDa Dextran | Thermo Fisher Scientific | C-3713 | |
Alexa Fluor 647 | Thermo Fisher Scientific | D-22914 | |
Alexa Fluor 546 | Thermo Fisher Scientific | D-22911 | |
Fluo-8 AM | TEFlabs | 203 | |
MK571 | Alexis Biochemicals | 340-021-M005 | |
MS-222 | Sigma-Aldrich | E10521 | |
Pluronic acid F-127 | Sigma-Aldrich | P2443 | powder |
L-Histidine monohydrochloride monohydrate | Sigma-Aldrich | 53370 | |
DMSO | Merck Millipore | 1029522500 | |
Name | Company | Catalog Number | Comments |
Equipment | |||
Electronic pipette | BrandTech | HandyStep Electronic Repeating Pipette | |
NiCr-Ni thermocouple | Greisinger Elektronik | GTF 300 | |
Micropipette puller | Narishige | Model PC-10 | two-step puller |
Funnel applicator | (Custom-made) | ||
Line-illumination microscope | (Custom-made) | otherwise, a commercially available spinning disk microscope | |
Objective W Plan-Apochromat 63x/1.0 | Zeiss | 441470-9900-000 | |
Objective W Plan-Apochromat 40x/1.0 DIC | Zeiss | 441452-9900-000 | |
Name | Company | Catalog Number | Comments |
Software | |||
MATLAB | The MathWorks | from R2010b upwards |