We describe the use of micro-thermocouples to estimate local temperature gradients in steady laminar boundary layer diffusion flames. By extension of the Reynolds Analogy, local temperature gradients can be further used to estimate the local mass burning rates and heat fluxes in such flames with high accuracy.
Gasphasen auftretenden Flammen und in kondensierter Phase Brennstoffe Modellierung des realistischen Brennverhalten von kondensierter Phase Brennstoffen außer Reichweite, zum Teil blieb wegen der Unfähigkeit, an der Schnittstelle zwischen der komplexen Wechselwirkungen zu lösen. Die aktuelle Forschung stellt eine Technik die dynamische Beziehung zwischen einem brennbaren kondensierten Kraftstoffoberfläche und Gasphasen Flammen in laminaren Grenzschichten zu erkunden. Versuche haben bisher in beiden gezwungen und freie konvektive Umgebungen sowohl über feste und flüssige Brennstoffe durchgeführt worden. Eine einzigartige Methodik, basierend auf der Analogie Reynolds wurde verwendet, um lokale Massenverbrennungsraten und Flamme Wärmeflüsse für diese laminaren Grenzschicht Diffusionsflammen zu schätzen lokale Temperaturgradienten an der Kraftstoffoberfläche verwendet. Lokale Massenverbrennungsraten und Konvektionswärme und Strahlungswärme Feedback von den Flammen wurden sowohl in der Pyrolyse und plume Regionen gemessen durch Temperaturgradienten abgebildet in der Nähe der Wand durch eine Zwei-Achsen-Traver mitse-System. Diese Versuche sind zeitaufwendig und kann schwierig sein, zu entwerfen, die kondensierte Kraftstoffoberfläche nur für eine begrenzte Zeit nach der Zündung ständig brennt. Die Temperaturprofile in der Nähe der Kraftstoffoberfläche benötigen während des stationären Verbrennung eines kondensierten Kraftstoffoberfläche mit einer sehr hohen räumlichen Auflösung, um eine angemessene Schätzung der lokalen Temperaturgradienten zu erfassen abgebildet werden. Eine sorgfältige Korrekturen für die Strahlungswärmeverluste aus den Thermoelemente sind auch für genaue Messungen unerlässlich. Aus diesen Gründen muss die gesamte Versuchsaufbau mit einem computergesteuerten Traversenmechanismus automatisiert werden, die meisten Fehler aufgrund der Positionierung einer Mikrothermoelement eliminiert wird. Eine Übersicht über die Schritte reproduzierbar wandnahe Temperaturgradienten zu erfassen und nutzen sie lokale Verbrennungsraten und Wärmeflüsse zu beurteilen, ist vorgesehen.
Während kritische Fortschritte haben im Bereich der Brandschutzforschung im vergangenen Jahrhundert, die Vorhersage Raten von Flammenausbreitung bleibt immer noch eine Herausforderung für viele Materialien in den verschiedensten Konfigurationen vorgenommen. Flammenausbreitung verläuft häufig in entweder die eingebauten oder natürlichen Umgebungen als eine Reihe von Zündungen neuer Elemente, ausgehend von einer anfänglichen Zündquelle. Kenntnisse über die Brenneigenschaften der einzelnen Brennmaterialien ist von entscheidender Bedeutung, um diese Sätze von Flammenausbreitung zu prognostizieren, denn dies trägt zu Raten von Erhitzen auf nicht entzündetem Elemente. Die Wärmefreisetzungsrate (HRR) eines Brennelements ist daher als die grundlegendste Menge in Brand Forschung 1 zitiert worden sind, etwa gleich dem Brennen (Massenverlust) Rate der kondensierten Phase Kraftstoff, nämlich die Verdampfungsrate von ein flüssiger Brennstoff oder Pyrolyse Rate eines festen Brennstoffs.
Die Verbrennungsgeschwindigkeit kann als ein Maß für die Entflammbarkeit einer mater gedacht werden,ial und ist ein kritischer Parameter in Brandrisikoanalyse und das Design von Feuerlöschanlagen. Die lokale Massenverlust (oder Brennen) Rate, M "f, einer vertikalen Wand, insbesondere eine wichtige Variable in vielen brandbedingten Probleme, wie die Flammenausbreitung an einer Wand, Feuer Wachstum und Energiefreisetzungsraten innerhalb ein Gehäuse, Feuer, und die Ausbreitung von Rauch und heißen Gasfahnen Für Vorhersage nach oben Flammenausbreitung an einer senkrechten Wand, die Flammenhöhe berechnet werden müssen, die auf die Gesamtenergiefreisetzungsrate abhängt;. das wiederum wird direkt beeinflusst durch die lokale Massenverlustrate der gesamten Pyrolysetank Bereich der Wand 2-3 integriert über. Während die Kenntnis dieser integrierten Massenverlustraten sind relativ gut bekannt, Kenntnis der Massen Abbrandgeschwindigkeiten an inkrementalen Positionen entlang einer Kraftstoffoberfläche sind nicht gut bekannt weil experimentelle Techniken wie Raten zu messen sind äußerst begrenzt. Eine Technik, die diese "lokalen" Massenverbrennungsrate liefertInformationen könnten besseren Einblick auf die Verbrennung von kondensierten Brennstoffe liefern Forscher können die Mechanismen besser zu verstehen, die verschiedene Kraftstoffe oder Konfigurationen voneinander unterscheiden. Da die meisten Materialien zunächst in der kleinen Skala bewertet werden (zB in einem Kegel – Kalorimeter 1), ein logischer erster Schritt ist es, eine Technik zu schaffen , lokale Massenverbrennungsraten in kleinen, laminare Diffusionsflammen über kondensierter Kraftstoff Oberflächen zu messen.
Die vorliegende Arbeit beschreibt die experimentelle Methodik und Protokolle für die Durchführung von Experimenten auf stetigen laminaren Flammen über kondensierter Kraftstoff Oberflächen etabliert. Die Einschätzung der lokalen Temperaturgradienten Mikrothermoelemente verwendet , ist eine besonders nützliche Technik für die Schätzung der lokalen Massenverbrennungsraten und Wärmeströme in diesen Flammen 4-6. Eine Analyse der Daten aus der Literatur zeigt die Schwierigkeit, lokale Wärmeübertragung, Verbrennung und Reibungskoeffizienten an der conden der Bestimmungsed Kraftstoffoberfläche, die die Physik für das Verständnis und die zugrunde liegenden Mechanismen sind wichtig , die einen bestimmten Bränden und ihrer Ausbreitung 4-6 fahren. Die Komponenten der Wärmeflüsse, die vielleicht die wohldosierten Feuer Eigentum an lokalen Standorten über eine Kraftstoffoberfläche geblieben sind, haben sich als schwierig erwiesen zu messen. Effekte wie Variabilität von Brennstoffen, Wärmefluß Skalierbarkeit Schwierigkeit Gleichgewichtsbedingungen zu erreichen und unterschiedliche Wärmestrommesser Technologien haben zu einer ziemlich breiten Streuung von Daten trugen , die in der Literatur 4 verfügbar ist. Die Messungen der lokalen Temperaturgradienten mit hoher Genauigkeit wird dazu beitragen, diese Variabilität zu lindern und auch die Wärmeübertragung Korrelationen bereitzustellen, die für die numerische Validierung von laminaren Wandbrände, eine kanonische Feuer Forschungsproblem verwendet werden könnten. Solche Experimente sind auch nützlich in der dynamischen Beziehung zwischen einer brennbaren kondensierte Brennstoffoberfläche und der Gasphase in Flammen laminare und turbulente Grenzschicht zu erkundens. Verfahren, um genau diese Temperaturgradienten in einer genauen und wiederholbaren Weise erfassen sind unten beschrieben.
Das Ziel dieser Untersuchung war es, eine neue Methode zur Schätzung der lokalen Massenverbrennungsraten zu entwickeln, sowohl für flüssige und feste Brennstoffe unter einer Vielzahl von Strömungsfeldbedingungen. Die Studie betrachtet zwei Fällen eine freie Konvektion Grenzschicht Diffusionsflamme und erzwungene Konvektion Grenzschicht Diffusionsflammen unter verschiedenen Bedingungen freiStrom etabliert, sowohl flüssige als auch feste Brennstoffe verwenden.
Lokale Brenngeschwindigkeiten gemessen über Feintemperaturmessungen über beide flüssigen Brennstoff getränkten Dochten und über feste Platten aus PMMA gefunden wurden andere Mittel der Schätzung übereinstimmen, nämlich Kraftstoff Regressions Messungen. Diese Temperaturgradienten in der Nähe der Kraftstoffoberfläche wurden unter Verwendung einer Korrelation auf der Reynolds – Analogie basiert bestimmt 12-13, die während einer stetigen, laminare Verbrennung funktionierte sehr gut für kleine Proben, was letztlich zu Daten innerhalb von 15% Genauigkeit für mittlere Ergebnisse und vieles mehr für die lokale Measurements 4-6. Der Korrelationsfaktor für diesen lokalen Massenverlustrate Messungen hängt von der Spalding Massentransfer Anzahl der repräsentativen Treibstoff und anderen thermophysikalischen Eigenschaften des Kraftstoffs , der von vornherein berechnet werden kann. Die Ergebnisse legen nahe, dass diese Technik nützlich sein können, um diese Mengen zu extrahieren und die Verbrennung von Brennstoffen in kleinem Maßstab in größerem Detail in der Zukunft zu verstehen.
Andere Studien in der Literatur haben die Vertreter der Arbeit hier erweitert enthält numerische Simulationen 4 und Experimente an vertikal orientierten Proben frei 4,5 Brennen und horizontal montierten Proben unter Umgebungs Winde 6. Für diesen Konfigurationen haben Komponenten der Wärmeflüsse auch lokal über die Brennstoffoberfläche unter Verwendung des gleichen Feindraht-Thermoelement-Technik sehr nahe an der kondensierten Kraftstoffoberfläche ermittelt. Während Komponenten des Wärmestroms in der Vergangenheit durch die Verwendung von eingebetteten Lehren gemessen, this-Technik ist minimal-invasiv und bietet eine direkte Messung der konvektiven Wärmeflüsse, die vor nicht möglich gewesen.
Besondere Vorsicht ist bei Versuchen getroffen werden, wenn bestimmte Konfigurationen und Einrichtung des Geräts muss so gewählt. In diesen Experimenten wurden Thermoelemente für den Schritt 3.2 ragt aus einem kleinen Keramikrohr gewählt wird, an dem Draht zu halten Spannung und macht die Lage des Thermoelements relativ fixiert. ein Thermoelement-Draht über die ganze Flamme ohne Schlauch von dem Keramikrohr mögliche Störungen reduzieren würde suspendiert Verwendung jedoch würde es den spezifischen Ort des Thermoelements Lokalisieren viel variabler als der Draht mit steigenden Temperaturen zu erweitern neigt. Manchmal Änderungen in der Konfiguration könnte Effekte über die Breite der Probe (beispielsweise die Probe Neigen) induzieren. Wenn das Setup von den in der Vergangenheit 4-6, um Schritt 4.14 gelegentliche Kontrollen untersucht modifiziert , dass die Flammentemperatur measungen über die Breite der Probe zeigen keine signifikante Veränderung (dh ein 2-D Annahme hält noch) genommen werden sollte. Andernfalls wird ein 3-D-Abbildungssystem müssen implementiert werden.
Die wichtigsten Schritte während der Durchführung der Experimente haben mit der Vorbereitung des Brennstoffs und die ordnungsgemäße Verwendung von Thermoelemente zu tun. Schon geringe Abweichungen bei der Positionierung der Thermoelemente können Fehler verursachen, daher muss darauf geachtet werden, wenn das Thermoelement die Positionierung in den Schritten 3.2, 4.13 und 4.14. Der Kraftstoff Docht muss auch so angeordnet werden, dass möglichst ebene wie möglich gehalten wird (Schritt 2.1) und alle Füllmaterial sollte aus Dochten (Schritt 2.1.1) gebacken werden.
Das Abgassystem, aktiviert in Schritt 4.1 sollte auch als minimal oder isoliert wie möglich nahe dem Experiment beseitigen zu helfen, Strömungsstörungen gehalten werden. Dies sollte, indem sichergestellt wird eine kleine Kerze überprüft werden nicht durchgebrannt ist, wo der Test stattfinden wird (ohne Wind). Leitbleche, BildschirmeEine separate geschlossenen Anlage oder beim Testen in einem großen Raum kann diese verwendet werden, zu erreichen. In Schritt 4.2 muss der feste Brennstoff möglichst gleichmäßig gezündet werden. Während der Propangasbrenner nicht die ideale Quelle ist , dies zu tun, wurden Experimente nicht 4-6 in früheren Arbeiten zu empfindlich auf die Zündquelle vorhanden. Empfindlichkeit gegenüber der Zündquelle sollte durch Variieren der Zeit oder Intensität der Belichtung und Beobachten der Ergebnisse auf dem stationären Massenverbrennungsrate während der Experimente dokumentieren. Wenn die Empfindlichkeit ein Fußbodenheizungs beobachtet wird, sollte alternativ verwendet werden, um Proben zu entzünden. Feste Brennstoffe oder jeder Brennstoff, der nicht eine große (> 300 sec) stetig brennende Region hat wie durch Massenverlustraten beobachtet sollte während einer kurzen Region genommen Temperatur-Mapping haben. Zum Beispiel wird in Schritt 4.13 die Zuordnung für PMMA empfohlen über den ersten 150 Sekunden genommen werden, während der Brennstoff noch relativ flach und Oberflächen Regression wurde gut dokumentiert. Oberflächenregressions Messungen kann ichmageJ oder andere ähnliche Bild Software Pixel auf den Fotos zu messen und auf Länge zu konvertieren. Alternativ kann eine digitale Mikrometer der Oberfläche Regression der Festplatte zu messen, verwendet werden, nachdem sie abkühlt (beachten Sie die Oberfläche von "Sprudeln" Materialien wie PMMA müssen zunächst geschliffen werden).
Die vorgeschlagene Abbrandgeschwindigkeit Korrelation auf laminar Annahmen beruht, es wird jedoch vermutet, dass diese Technik eine ähnliche Form für turbulente Verbrennung einer Brennstoffoberfläche folgen sollte, wenn auch mit einer modifizierten funktionellen Beziehung, die experimentell bestimmt werden müssen. Die Arbeit hier präsentiert werden können anschließend verlängert Grenzschichtverbrennung und die damit verbundenen Wechselwirkungen zwischen Turbulenz und Gasphasen-Wärmefreisetzung zu turbulent, die den Vorfall Wärmefluss auf die Kraftstoffoberfläche treiben kann weiter untersucht werden.
Die Theorie, auf die die Brenngeschwindigkeit Korrelation beruht vernachlässigt auch Strahlung. Die Theorie wird stark vereinfacht leading zu Unsicherheit in seiner prädiktiven Fähigkeiten unter Umständen, die durch die vorliegende Arbeit nicht abgedeckt sind. Zum Beispiel kann die angegebene Methode nicht für hohe Rußbildung Flammen arbeiten, wo der Wärmestrom auf die Oberfläche weitgehend Strahlungs ist. Für große turbulenten Wand Flammen, wo die Strahlungswärmefluss in die kondensierte Kraftstoffoberfläche hoch ist, die Brenngeschwindigkeit Korrelation vorgeschlagen kann oder auch nicht. Aufnahme von Strahlungseffekten in der vorgeschlagenen Korrelation ist somit wünschenswert, und weitere Forschung muss, um diese Funktionsbeziehung zu bestimmen, durchgeführt werden. Dieser Bereich erfordert Verbesserungen in dem Modell, wenn sicher Vorhersageverfahren sind für solche Flammen erreicht werden.
The authors have nothing to disclose.
The authors would like to acknowledge financial support for this work from the Minta Martin Foundation at the University of Maryland, College Park.
Thermocouples with connectors and clamps | |||
Unsheathed Fine Gauge T/C | P13R-002 | Omega Engineering, Inc. | Fine wire microthermocouples (R-type) |
Unsheathed Fine Gauge T/C | P13R-003 | Omega Engineering, Inc. | Fine wire microthermocouples (R-type) |
Ceramic 2 hole round -5pk | TRX-010364-6 | Omega Engineering, Inc. | Ceramic tubes to hold the fine wire thermocouples |
Thermocouple extension wire | EXTT-RS-24-100 | Omega Engineering, Inc. | Thermocouple extension wire |
Male Female Connectors | SHX-R/S-MF | Omega Engineering, Inc. | Connectors for R-type thermocouples |
Accessories | MSRT-116-10 | Omega Engineering, Inc. | Rubber tubes for maintaining grip for the ceramic tubes at the connectors's end |
Traverse mechanism | |||
X slide, travel = 10 inch, 0.025 in/rev, limits, NEMA 17 | XN10-0100-E25-71 | Velmex Inc. | Velmex unislide |
Vexta type 17, 1.8 deg/step 2phase, single shaft stepper motor | PK245-01AA | Velmex Inc. | Stepper motor |
Mounting cleat, standard using 6-32 bolts | XMC-2 | Velmex Inc. | Mounting accessories for the given Velmex unislide |
6-32 X 7/16 SH Cap Screw for Xslide in X & Y axis | XMB-1 | Velmex Inc. | Mounting accessories for the given Velmex unislide |
X slide, travel = 10 inch, 0.025 in/rev, limits, NEMA 17 | XN10-0100-E25-71 | Velmex Inc. | Velmex unislide |
Vexta type 17, 1.8 deg/step 2phase, single shaft stepper motor | PK245-01AA | Velmex Inc. | Stepper motor |
Mounting cleat, standard using 6-32 bolts | XMC-2 | Velmex Inc. | Mounting accessories for the given Velmex unislide |
6-32 X 7/16 SH Cap Screw for Xslide in X & Y axis | XMB-1 | Velmex Inc. | Mounting accessories for the given Velmex unislide |
Control, 2 Axis programmable stepping motor control, 1 motor at a time | VXM-2 | Velmex Inc. | Stepper motor controller |
USB to RS232 DB9 Serial Communication cable 10 ft | RPC-USB-RS232-3M | Velmex Inc. | Serial communication cable between the stepper motor controller and computer |
Data acquisition hardware | |||
NI 9214 16-Ch Isothermal TC, 24-bit C Series Module for high accuracy thermocouple measurements (includes terminal block) |
781510-01 | National Instruments | Thermocouple data acquistion card |
Power Cord, AC, U.S., 120 VAC, 2.3 meters | 763000-01 | National Instruments | Power cord for the 8 slot C-DAQ chassis |
cDAQ-9178, CompactDAQ chassis (8 slot USB) |
781156-01 | National Instruments | C-DAQ chassis for NI 9214 and NI 9239 |
EMI Suppression Ferrite for NI 9229/39 BNC | 782801-01 | National Instruments | Accessories for NI 9239 data acquistion card |
NI 9239 BNC, 4-Ch +/-10 V, 50 kS/s per channel | 780181-01 | National Instruments | Data acquistion card for hot wire anemometer system |
cDAQ-9171, CompactDAQ chassis (1 slot USB) | 781425-01 | National Instruments | C-DAQ chassis for NI 9214 |
Cameras | |||
Nikon D7100 24.1 MP DX-Format CMOS Digital SLR with 18-105mm f/3.5-5.6 AF-S DX VR ED Nikkor Lens | Nikon D7100 | Amazon | Digital SLR camera for taking top-view flame photographs |
Canon EOS Rebel T5 DSLR CMOS Digital SLR Camera and DIGIC Imaging with EF-S 18-55mm f/3.5-5.6 IS Lens | Canon EOS Rebel T5 DSLR | Amazon | Digital SLR camera for taking side-view flame photographs |
Mass balance | |||
Mettler-Toledo, MS32001L Balance Prec 32200g x 0.1g | 97035-654 | VWR | Precision electronic mass balance for measuring average mass burning rate |
Mini CTA system | |||
MiniCTA Anemometer Package for wire- and film- probes | 9054T0461 | Dantec Dynamics | Hot wire system for measuring velocities and turbulence intesity at the wind tunnel outlet |
Wind tunnel equipment | |||
1/2 in. x 4 ft. x 8 ft. C-3 Whole Piece Birch Domestic Plywood | Model # 833185 | Home Depot | Used to make the laboratory scale wind tunnel |
Woodgrain Millwork WM 206 11/16 in. x 11/16 in. x 96 in. Wood Pine Corner Moulding | Model # 109610 | Home Depot | Used to make the laboratory scale wind tunnel |
Extension Spring, Loop Ends, 6.562" Overall Length, Pack of 6 | 1330K26 | McMaster-Carr | Used to make the laboratory scale wind tunnel |
Strainer Grade Wire Cloth, 30×30 Mesh, 0.0130" wire diameter. 12"x12" sheet | 9241T41 | McMaster-Carr | Used to make the laboratory scale wind tunnel |
Strainer Grade Wire Cloth, 40×40 Mesh, 0.0065" wire diameter. 12"x12" sheet | 9241T42 | McMaster-Carr | Used to make the laboratory scale wind tunnel |
Mobile Lift Table Foot-Operated, 600# Capacity, 10" – 33" Table Height | 2791T22 | McMaster-Carr | Table to hold the experimental setup |
ebm-papst p/n: G3G250-MW75-05 (EC Centrifugal blower, 200-240V, 3-phase, 50/60Hz, M3G112-EA motor, 2.2kW) | G3G250-MW75-05 | Ebm papst | Blower for the wind tunnel |
ebm-papst p/n: HX0C-003-000-04 (Controller) | HX0C-003-000-04 | Ebm papst | Pulse width modulation controller for controlling the speed of the blower |
8020 1” X 1” T-SLOTTED PROFILE | 8020-1010 | 80/20 (Rankin Automation) | Used to create a framework for the wind tunnel |
Momentive/GE Silicone Sealant RTV108, 10.1-oz Cartridge, Semi-Clear | 7545A472 | McMaster Carr | Sealant for the wood |
Software | |||
LabVIEW | Contact vendor | National Instruments | Used for continuous temperature data acquistion and analysis. Alternatively used for positioning the thermocouple. |
Mettler Toledo mass balance software | Contact vendor | Mettler Toledo | Used for measuring the mass loss rate of the condensed fuel wick / solid plate with time |
ImageJ | Free download | NIH, http://imagej.nih.gov/ij/ | Used for measuring the flame standoff distance and surface regression of the solid fuel plate |
Matlab | Contact vendor | Mathworks | Used for post-processing of data |
Fortran 90/95 | Contact vendor | The Fortran company | Used for post-processing of data |
MATERIALS | |||
Methanol | UMD Chem Store | NA | Liquid fuel |
Ethanol | UMD Chem Store | NA | Liquid fuel |
safety glasses | UMD Chem Store | NA | Used for safety purpose |
spray bottle | UMD Chem Store | NA | Used for carrying water in case of emergency |
Syringe 60 cc | UMD Chem Store | NA | Used for soaking the liquid fuel wick with liquid fuels |
Optically Clear Cast Acrylic Sheet, 1/8" Thick, 24" X 48" | Mc master carr | 8560K262 | Solid fuel PMMA |
Loctite Proxy Pak (Hi-temp adhesive) | Mc master carr | 7556A33 | Used for covering the sides of the wick with aluminum foil |
Hi-Temp Aerosol Spray Paint (Black) | Mc master carr | 7832T1 | Used for painting the insulation |
Self-Igniting Economy Propane Gas Torch Adjustable Flame, 4179 Btu/hr | Mc master carr | 78245A3 | Propane torch for igniting the solid fuel plate |
Heat-Resistant Cotton Glove W/Nitrile Coating, 400 Deg F Max Temp, 10" Lg, Large | Mc master carr | 56025T1 | Used for safety purpose |
Modular Protective Screen with Tie-on Curtain, 6'Height x 4'Width Abrasion-Resistant Fiberglass | Mc master carr | 9145T84 | Fire-resistant curtain for the background |
Multipurpose Aluminium Alloy 6061 .125" thick, 12"X24" | Mc master carr | 89015K28 | Used for holding the insulation |
Marine grade plywood 1/2" thick, 12" X 24" | Mc master carr | 1125T32 | Used for holding the experimental setup |
Multipurpose Aluminium Alloy 6061 U-channel, 2" base X 1-1/4" legs, 1' length | Mc master carr | 1630T473 | Used for holding the aluminum plate, insulation and wick |
Architectural Anodized Aluminium (Alloy 6063) 90 deg angle, 1/8" Thk, 1/2" X 1/2" legs, 6' L | Mc master carr | 4630T21 | Used for holding the aluminum plate, insulation and wick |
Aluminium Inch T-Slotted Framing System Concealed 90 degree connector, for 1" extrusion | Mc master carr | 47065T155 | Used for holding the aluminum plate, insulation and wick |
Aluminium Inch T-Slotted Framing System Extended 90 degree bracket, Single, 4 Hole, for 1" extrusion | Mc master carr | 47065T175 | Used for holding the aluminum plate, insulation and wick |
Aluminium Inch T-Slotted Framing System Four-Slot single, 1" solid extrusion, 4' length | Mc master carr | 47065T101 | Used for holding the aluminum plate, insulation and wick |
1/2" X 48" X 36" (Superwool 607 insulation board) 1 carton containing 12 sheets | Mccormick Insulation | Superwool 607 | Insulation material for making the wick and the wick holder |