Light sheet fluorescence microscopy is an excellent tool for imaging embryonic development. It allows recording of long time-lapse movies of live embryos in near physiological conditions. We demonstrate its application for imaging zebrafish eye development across wide spatio-temporal scales and present a pipeline for fusion and deconvolution of multiview datasets.
Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions.
Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments.
Морфогенез это процесс, который формирует зародыш и вместе с ростом и дифференциацией приводит в движение онтогенеза из оплодотворенной яйцеклетки в зрелый многоклеточный организм. Морфогенетических процессы во время развития животных могут быть проанализированы с помощью лучших изображений неповрежденных живых образцов 1-3. Это происходит потому, что такая вся эмбрион изображения сохраняет все компоненты, которые стимулируют и регулируют развитие, включая градиенты сигнальных молекул, внеклеточного матрикса, сосудистую, иннервации, а также механические свойства окружающих тканей. Для того, чтобы преодолеть весы, на которых происходит формообразование, быстрые субклеточных события должны быть захвачены в минуту масштабе времени в контексте развития всей ткани в течение нескольких часов или дней. Для того, чтобы выполнить все эти требования, была разработана современная реализация 4 ортогональной плоскости освещения микроскопа 5. Первоначально он был назван Селективный Plane Освещение Микроскопия (SPIM) 4; теперь всеобъемлющим термином Light Sheet флуоресцентной микроскопией (LSFM) обычно используется. LSFM позволяет съемку с высоким временным разрешением, в то время вызывая меньше фототоксичности , чем лазерное сканирование или вращающийся диск конфокальной микроскопов 6,7. В настоящее время существует уже многие реализации основного принципа света листа освещения , и она была использована для изображения большое разнообразие образцов и процессов , которые ранее были недоступны для исследователей 8-11.
Сначала мы хотели бы выделить несколько ключевых преимуществ по сравнению с традиционными LSFM подходов конфокальной микроскопии:
Для получения значимых результатов от живых изображений микроскопических экспериментов, важно, что наблюдение лишь в минимальной степени влияет на образец. Тем не менее, многие организмы, в том числе данио очень чувствительны к воздействию света лазера, что делает его сложным для изображения их в конфокальной микроскопии с высоким временным разрешением без фототоксичность эффекты , как застопорился или замедленным 6,7 развития. LSFM в настоящее время метод флуоресцентной визуализации с наименее деструктивным воздействием на образце 7. Так как тонкий лазерный луч лист освещает только часть образца, который проецируется в определенный момент времени, свет листовой микроскоп с использованием фотонов очень эффективно. Следовательно, низкая освещенность позволяет в течение длительного времени покадровой наблюдений здоровых образцов, например , 12-17. Не Кроме того, благодаря минимальной инвазивности LSFM, количество получаемых изображений больше не продиктованы, сколько света образец может терпеть, но, скорее, сколько данных могут быть обработаны и сохранены.
Вдоль тех же самых линий поддержания образца в вблизи физиологических условиях, LSFM поставляется с альтернативными стратегиями крепления образца хорошо подходит для живых эмбрионов. В технике LSFM, эмбрионы, как правило, встроены в тонкой колонке низкий процент агарозы. Mountinг в агарозном цилиндров позволяет полную свободу вращения, поэтому образец можно наблюдать от идеального угла (в LSFM называют его) и из нескольких представлений одновременно. MultiView визуализации и последующего MultiView слияние выгодно особенно для больших, рассеивающих образцов и позволяет захватывать их с высоким изотропным разрешением. Краткая информация о других возможных стратегий LSFM монтажа можно найти в официальном руководстве по эксплуатации микроскопа, в главе, посвященной подготовке проб, написанной в лаборатории Э. Рейно. Это рекомендуется читать, особенно если цель состоит в том, чтобы изображения различных образцов, чем описано здесь.
Приобретение изображения в LSFM является широкое поле, камера на основе, в отличие от лазерной сканирующей конфокальной микроскопии. Это приводит к более высоким отношением сигнал-шум (SNR) для полученных изображений и может быть очень быстро (от десятков до сотен кадров в секунду). Высокая чувствительность LSFM дополнительно обеспечивает визуализацию слабо флуоресцентного SAMPле, как факторы транскрипции , выраженные на эндогенных уровнях 18 или, в ближайшем будущем, эндогенные белки помечены использованием CRISPR / cas9. Высокое SNR также имеет важное значение для успешного анализа вниз по течению изображения. Высокая скорость требуется не только для захвата быстрых внутриклеточные процессы, но и к изображению весь эмбрион из нескольких представлений достаточно быстро. Бесшовная слияние нескольких представлений может быть достигнуто только, если наблюдаемое явление не меняется в процессе приобретения этих нескольких г стеков поступающих из отдельных представлений.
Преимущества LSFM обычно не приходят за счет качества изображения. Боковое разрешение LSFM немного хуже, чем разрешение конфокальной микроскопии. Это объясняется тем, что цели обнаружения, используемые в LSFM имеют более низкую числовую апертуру (обычно 1,0 или меньше) по сравнению с 1,2-1,3 целей воды или кремния погружения на стандартных конфокальной установках. Кроме того, в связи с широким обнаружения поля в LSFM (Absenв.п. из прокол), есть больше вне фокуса света по сравнению с конфокальной микроскопии. Количество вне фокуса света определяется толщиной светового листа. Тем не менее, эти недостатки компенсируются более высокой SNR в LSFM. На практике это приводит к схожего качества изображений по сравнению с, например , вращающийся диск конфокальной приобретение 15. Следовательно, это обеспечивает надежное извлечение функций , таких как клеточные мембраны или ядер, например, для отслеживания клеточных клонов 15,19.
Осевое разрешение LSFM определяется, в дополнение к цели обнаружения, за счет толщины светового листа. Осевое разрешение может LSFM в некоторых случаях превосходят разрешение конфокальной микроскопии. Во-первых, улучшение разрешения наступает тогда, когда свет лист тоньше, чем разрешение аксиального объектива обнаружения, которые, как правило, имеет место для больших образцов с целью изображаемых малом увеличении. Второй способ, как LSFM может ACHieve лучше осевое разрешение, является MultiView фьюжн, в котором информация разрешения высокой ху из разных взглядов объединены в один стек изображений. Полученный в результате слиты стек имеет изотропное разрешение приближающуюся значения разрешения в боковом направлении 20,21. Стратегия для регистрации нескольких представлений друг на друга описанный в этой статье основана на использовании флуоресцентных гранул полистирола в качестве фидуциарных маркеров , встроенных в агарозном вокруг образца 20,21.
В результате коммерциализации LSFM, этот метод теперь доступен для широкого сообщества ученых 22. Таким образом, мотивация для написания этого протокола, чтобы сделать эту технологию доступной для онтогенетики, не имеющих практического опыта в LSFM и получить эти ученые начали использовать эту технологию с их образцами. Наш протокол использует коммерческий световой микроскоп лист, который представляет собой концептуально простой микроскоп тшляпа прост в эксплуатации. Дополнительно мы хотели бы упомянуть другие недавние протоколы для получения изображений данио с домашней работы LSFM установок, которые могут быть пригодны для ответа на конкретные вопросы 23-25. Другой вариант входа в LSFM являются открытые платформы 26,27, использующие принципы открытого доступа , чтобы принести свет лист микроскопии более широкой общественности. Документация как аппаратных средств и аспекты программного обеспечения можно найти на сайте http://openspim.org и https://sites.google.com/site/openspinmicroscopy/.
В этом протоколе, мы используем костистых данио в качестве модельной системы для изучения процессов развития с LSFM. Морфогенез данио глаз является примером, который подчеркивает многие из преимуществ LSFM. LSFM уже использовалась в прошлом , чтобы исследовать развитие глаз в оризии 28 и в данио 29,30. На ранней стадии развития глаз это сложно правильно ориентировать эмбриона для обычной микроскопии,как громоздкий желтка не позволяет эмбрион лежать на стороне с его глаз лицом к цели. Тем не менее, с LSFM установки в агарозном колонну, образец может быть воспроизводимо установлен. Кроме того, при переходе от глазного пузыря до стадии глазного бокала, глаз подвергается основные морфогенетические перестроек сопровождается ростом, который требует захвата большой стек г и большое поле зрения. Кроме того, для этих задач LSFM превосходит обычного конфокальной микроскопии. Процесс формирования глазного бокала трехмерно, поэтому трудно понять и визуализировать исключительно изображений с одной точки зрения. Это делает MultiView визуализации с изотропным разрешением полезным. После формирования глазного бокала, сетчатка становится все более чувствительным к лазерному воздействию. Таким образом, низкое фототоксичности, связанный с LSFM является одним из основных преимуществ для долгосрочного визуализации.
Здесь мы представляем оптимизированный протокол для работы с изображениями от одного до трех дней старых эмбрионов даниоЛичинки-й с акцентом на развитие глаз. Наш метод позволяет записывать покадровой фильмов, охватывающих до 12-14 часов с высоким пространственным и временным разрешением. Важно отметить, что мы также показывают трубопровод для обработки данных, что является важным шагом в LSFM, поскольку этот метод всегда создает большие наборы данных, часто в диапазоне терабайт.
1. Основные этапы и способы их устранения для сбора данных
Типичные параметры получения изображения для GFP и RFP , выражающей образец можно найти в таблице 3. В описываемой установке микроскопа свет лист является статическим, образованной цилиндрической линзой. Эти две цели освещения являются воздушные линзы и цель обнаружения представляет собой водно-окунанием линзы. Увеличение 1.0 с 20X / 1.0 или 40X / 1.0 цели дает 230 нм и 115 нм размер пикселя и поле зрения 441 х 441 мкм или 221 х 221 мкм соответственно. Рекомендуется использовать легкую толщину листа по умолчанию с центром до границы соотношении 1: 2. Для 20X / 1.0 эта толщина соответствует 4,5 мкм, а для 40X / 1,0 до 3,2 мкм в центре. Если скорость формирования изображения не является основным приоритетом, использовать отдельные дорожки в случае образца многоцветной, чтобы избежать перекрестных помех излучения флуоресценции между каналами. Самая высокая скорость приобретения ограничена 50 мс за г шаг заскорость перемещения по оси Z водителя. Если цель состоит в том, чтобы достичь максимальной скорости формирования изображения в случае, например, две дорожки с двойным двусторонней подсветкой, время экспозиции должно быть установлено таким образом , чтобы сумма всех снимков , сделанных на стадии г ниже 50 мс. С другой стороны, если только одно изображение приобретается за г шаг, это не выгодно, чтобы установить время короткой экспозиции 50 мс.
размер 1920 x 1920 Изображение |
16-разрядный |
Pivot просканировать |
Двухсторонний освещение с онлайн-фьюжн |
Цель / 0,2 освещение 10X |
20X цель обнаружения / 1.0 W Plan-Apochromat |
Трек 1: Возбуждение 488 нм обычно 2% от 100 мВт лазер, 550 нм эмиссионный фильтр SP |
Трек 2: 561 нм Возбуждение обычно 3% от 75 мВт лазер, 58эмиссионный фильтр LP 5 нм |
Выдержка времени до 100 мс |
Z толщина стека 50-100 мкм |
1-1.5 мкм г размер шага в режиме непрерывного привода г |
Инкубация при 28,5 ° C |
Таблица 3: Визуализация параметров.
Осмотр образца после эксперимента
Важно, чтобы убедиться, что образец по-прежнему здоровым в конце эксперимента. В качестве первого отсчета, проверьте биение образца под стереоскоп. С парой острых щипцов образец может быть выведен из агарозы и переехал в инкубатор для дальнейшего развития, чтобы проверить, если он пострадал от изображения. В качестве альтернативы, он может быть закреплен на меченых антител.
Монтаж и дрейф
Крайне важно, чтобы держать осмолярность камеры сспособность по близко к осмолярности вложению агарозы, в противном случае набухание / сокращение агарозы и последующей нестабильности образца будет происходить. Таким образом, использовать один и тот же раствор (E3 среда без метиленового синего), чтобы заполнить камеру и подготовить 1% с низкой температурой плавления агарозы аликвот. Кроме того, не оставляйте агарозы в блоке C нагрева 70 ° в течение более 2 часов, так как он может потерять свои желирующие свойства.
Не внедряйте рыбу в слишком горячей агарозы, так как это может привести к теплового шока ответ или гибели эмбриона. Если вы не уверены о влиянии теплой агарозы на эмбрионах, убедитесь, что хвост не сгибать и что частота сердечных сокращений не замедляется. Если это происходит, используйте другой эмбрион для эксперимента.
Держите общую длину агарозном колонки с образцом короткого (около 2 см) и установите данио с его головкой, ориентированной на кончик плунжера. Аналогично, агарозы цилиндр выдавливается из capillичных должны быть настолько короткими, насколько это возможно. Эти меры позволят обеспечить стабильность образца на протяжении всего фильма. В то же время, столбец агарозы должен быть достаточно длинным, так что сам стеклянный капилляр не доходит на пути света, так как это может привести к значительному преломление и отражение.
Первоначальный дрейф образца обусловлено изменением объема самого агарозном цилиндра. Скольжение поршня не является причиной для этого. Таким образом, это не помогает зафиксировать поршень с пластилином или лака для ногтей. Эмбрион может изменить свою позицию во время фильма из-за его естественного роста тоже. Соответственно, желательно, чтобы центр области интереса в середине поля зрения и сохранить некоторую комнату на краях, чтобы приспособить эти движения.
Уменьшение количества вложению среды в пути прохождения света
Ориентирование образец правильно помогает добиться наилучшего качества изображения 15. Генралли, возбуждение и излучение света должно проходить через как мало ткани и монтажа средств массовой информации, как это возможно. Оптимальное решение агарозы свободной монтаж. Это было достигнуто, например , в установке для Arabidopsis бокового корня изображения 14, в котором главный корень был установлен в phytagel и боковые корни были впоследствии позволить расти из колонки гель полностью. Агарозном свободной монтаж также был разработан для работы с изображениями полного эмбриогенеза Tribolium жука в течение двух дней 12. Улучшение качества изображения не является основным мотивом в этом случае. Tribolium эмбрионы просто не выживают внутри агарозы достаточно долго. Абсолютно вложение средств массовой информации, свободной от монтажа не было достигнуто для длительного визуализации в данио. Тем не менее, мы можем воспользоваться тем фактом, что когда агарозном затвердевает, большинство эмбрионов расположены по диагонали в капилляре с одним глазом, расположенный глубоко в агарозы и второй глаз быть близко к поверхности колонны вложения. Tон глаз ближе к поверхности обеспечивает превосходное качество изображения и, следовательно, должны быть отображены преимущественно.
Агарозном концентрация и долгосрочных изображений
Концентрация агарозы для крепления представляет собой компромисс между стабильностью образца и возможность приспособиться к росту зародыша и диффузии кислорода к нему. Там нет дополнительного усиления в стабильности образца при использовании агарозных концентрации выше, чем на 1%. В качестве отправной точки для оптимизации экспериментов мы рекомендуем 0,6% агарозы, который также подходит для эмбрионов моложе 24 HPF, которые являются слишком деликатная для монтажа в 1% агарозы. Для анестезировать старых эмбрионов и личинок, концентрация MS-222 может быть увеличена до 200 мкг / мл без побочных эффектов 13.
В случае развивающихся эмбрионов изображаются дольше, чем ± 12 ч, агарозы монтажа не рекомендуется, так как он ограничивает рост зародыша и Causэс хвост деформации. Эта проблема была решена путем установки данио эмбрионов в полимерные пробирки FEP с показателем преломления , сходных с водой 13,39. Мышиные эмбрионы, с другой стороны, может быть иммобилизован в полых агарозном цилиндров 40 или в отверстия акрилового стержня , прикрепленного к шприцу 41. монтаж трубки FEP не рекомендуется в качестве метода по умолчанию, хотя, потому что стенка трубки преломляет свет чуть больше, чем агарозы.
Свет выравнивания листа
Для получения хорошего качества изображения чрезвычайно важно для выполнения автоматического выравнивания светового листа перед каждым экспериментом. Особенно, если были изменены параметры масштаба, цели были вынуты, или другая жидкость была использована в камере.
освещение
Стержень сканирование светового листа всегда должна быть активирована. Для больших образцов рассеяния, необходимо применить двухсторонний освещение с онлайн-Fusion достичь равномерное освещение по всему полю зрения. Двухсторонний освещение также уменьшает конкретную проблему визуализации глаз, который является преломление входящего светового листа линзой эмбриона. Более мелкие, меньше образцов рассеяния могут быть эффективно визуализируют с помощью односторонней подсветки, которая сокращает время обработки изображений в два раза и может привести к небольшому улучшению качества изображения по сравнению с двойной односторонней подсветкой. Это происходит потому, что пути прохождения света для освещения двух рук всегда разные и тем более эффективно можно выбирать. Кроме того, два световых листы, поступающие от каждой стороны никогда не идеально в одной плоскости, что вызывает легкое размывание после слияния. Для очень быстрых внутриклеточных событий, как растущих микротрубочек (Movie 2), двухсторонний освещение не подходит, так как изображение с подсветкой слева и справа приобретаются последовательно, что может привести к размытость.
фотообесцвечиванияи фототоксичности
Менее Флуорофор фотообесцвечивание часто упоминается как основное преимущество LSFM. Мы утверждаем, что цель должна быть не фотообесцвечивание вообще. Если есть заметные фотообесцвечивание в эксперименте живого изображения, образец, вероятно, уже из своего физиологического диапазона переносимой лазерного воздействия. При визуализации данио эмбрионов в прядильный диск микроскопа, по нашему опыту, высокой фототоксичности может затормозить развитие эмбриона еще до флуоресцентных отбеливателей сигнала заметно. Таким образом, параметры обработки изображений в LSFM должна быть отрегулирована таким образом, что наблюдается мало или нет фотообесцвечивание. Даже если LSFM нежен к образцу, разумно использовать только как много мощности лазера и время облучения, сколько необходимо для достижения отношения сигнала к шуму, достаточном для последующего анализа данных.
Z-стек, временные интервалы и размер данных
Файлы, генерируемые LSFM, как правило, очень большой; иногда в диапазоне терабайт. Часто бывает необходимо сделать компромисс между качеством изображения и размером данных. Это особенно касается расстояния между г стеков и интервалов в покадровой приобретения. Для определения интервалов Z, в идеале следует использовать кнопку Оптимальное в закладке инструмента Z-стека, особенно если набор данных будет деконволюции позже. Он вычисляет расстояние до достижения 50% перекрытие между соседними оптическими ломтиков. Тем не менее, несколько большие интервалы г, как правило, приемлемы. Они уменьшают время, необходимое для получения стека г, а также конечный размер файла. Оптимальное время выборки зависит от интересующего нас процесса. Для общего развития глаз 5-10 мин интервалы, как правило, приемлемы. Если какие-то структуры будут автоматически отслеживаются, последующие моменты времени должны быть достаточно похожи.
Флуоресцентные шарики
Флуоресцентные шарики в первую очередь служат координатные маркеры для регистрации различных мненийиз MULTIVIEW набора данных друг на друга. Всегда вихре шарик решения перед использованием. Не нагревать бусинки, поскольку это может привести к потере флуоресцентного красителя. Оптимальная концентрация шарика для регистрации MULTIVIEW должна быть определена экспериментально. Описанный плагин лучше всего работает с около 1000 обнаруженных шариков в течение каждого вида. Более крупные (500 нм или 1000 нм) шарики обнаруживаются более надежно, чем меньше (менее 500 нм) бусин. Это потому, что более крупные шарики ярче и легче сегмента без ложных срабатываний структур в образце. Недостатком больших шариков является то, что они очень заметны в окончательном плавленого и деконволюции изображения. Для каждого нового флуоресцентным маркером, соответствующий размер гранул и флуоресцентное излучение должны быть оптимизированы. Чтобы дать пример образца из рисунка 5 и Movie 3, 100 нм зеленые шарики излучения дали слишком много ложных срабатываний в мембране-GFP канала, но 1000 пм шарики красного излучения были обнаружены робастно в Н2В-RFP канала с очень мало положительных обнаружений внутри образца. Если обнаружение шарика терпит неудачу в канале с флуоресцентным маркером, отдельный канал только содержащий гранулы могут быть получены, но это не очень практично. Шлихтованные бусин суб разрешением дают прямое считывание функции рассеяния точки (ФРТ) микроскопа, который может быть использован для деконволюции (рис 2C-D). Если регистрация и слияние работает лучше с более крупными бусинами (например , 1000 нм), отдельное изображение PSF могут быть приобретены с суб-разрешением, например, 100 нм бусинами. Использование многоцветные бусы полезно при регистрации приобретения многоканальным и проверки того, что каналы наложения отлично.
Добавление флуоресцентных шариков не является необходимым при визуализации из единого представления без последующего MULTIVIEW регистрации и слияния. Тем не менее, даже в тех случаях, шарики могут быть полезными во время Первол регулировка света листа для проверки качества светового листа и в целом, чтобы выявить оптические аберрации. Такие оптические аберрации могут происходить из различных источников, таких как поврежденные или грязных целей, грязные окна камеры или неоднородности в агарозы. Шарики могут быть также использованы для коррекции дрейфа по MULTIVIEW регистрации Фиджи плагин 20.
Multiview
С целью реконструкции MultiView, то лучше приобрести нечетное число просмотров 3, 5 и так далее, которые не противостоящих друг другу. Это улучшает деконволюции поскольку PSFs изображаются с разных направлений. Важно также, чтобы подтвердить в начале приобретения покадровой времени, что имеется достаточное перекрытие между видами. Это лучше всего делать эмпирически, то есть, сразу подтверждая , что мнения в первый момент времени может быть успешно зарегистрирован. Когда цель приобретения MULTIVIEW является увеличить разрешениеобраза большого образца рассеяния, не рекомендуется, чтобы изображение всего образца в каждом ракурсе, но останавливаться вокруг центра образца, где ухудшает сигнал. Низкое качество сбора со второй половины образца не добавило бы полезную информацию для реконструкции MultiView.
2. Основные этапы и способы их устранения для обработки данных
В настоящее время существует несколько возможностей для обработки данных MultiView из легкого листового микроскопа, которые хорошо документированы и относительно легко принять. Мы используем приложение реконструкции MultiView, который является источником открытого программного обеспечения реализована на Фиджи 32 (Stephan Preibisch неопубликованные, Link 1a и Link1b в список материалов). Этот плагин является одним из основных редизайн предыдущего SPIM регистрации плагин 20, обзорот Шмид и др. , 42, интегрируя BigDataViewer и его XML и формат HDF5 33 с регистрации SPIM рабочего процесса (рис 1B, ссылка 2 , ссылка 3 ). Данное приложение может быть также адаптирован для высокопроизводительных вычислений кластера, что значительно ускоряет обработку 43. Эта регистрация MultiView приложение активно развивается дальше и продолжает улучшаться. В случае возникновения проблем или особенностей запросов для описанного программного обеспечения, пожалуйста , файл вопросов на соответствующих страницах GitHub ( ссылка 4 для Multiview реконструкции и Link 5 для BigDataViewer).
Второй вариант заключается в использовании коммерческого программного обеспечения, доступного вместе с микроскопом. Это решение хорошо работает, и работает тот же принцип использования флуоресцентных бусин, чтобы зарегистрировать различные точки зрения. Тем не менее, ему не хватает возможность визуализировать весь набор данных быстро, как с BigDataViewer. Кроме того, программное обеспечение не может быть адаптирована к кластеру, а тем более блоков обработки микроскоп для других пользователей, если дополнительные лицензии на программное обеспечение не закуплен.
Третий вариант, который также является программное обеспечение с открытым исходным кодом, была недавно опубликована в лаборатории Keller 44 и обеспечивает всеобъемлющие рамки для обработки и вниз по течению анализа световых данных листа. Это программное обеспечение использует информацию, в образце для выполнения множественного синтеза, поэтому она не требует присутствия флуоресцентных бусин вокруг образца. Но в то же время он предполагает ортогональную ориентацию взглядов изображений (цели), поэтому он не может быть использован для данных , полученных от произвольных углов 44.
требования к оборудованию
ntent "> Оборудование , используемое для обработки можно найти в таблице 4. Там должна быть достаточной емкости для хранения и четкий трубопровод для обработки имеющихся данных, впереди реального эксперимента. Приобретение изображений происходит быстрее , чем последующий анализ и легко чтобы залита необработанными данными. часто бывает нереально хранить все исходные изображения, а обрезанную версию или обработанные изображения , как плавленых видом, максимальные интенсивности проекций или сферических выступов 45.процессор | Два процессора Intel Xeon E5-2630 (Шесть Core, 2,30 ГГц Turbo, 15 МБ, 7,2 GT / сек) |
Память | 128 ГБ (16 × 8 ГБ) 1600 МГц DDR3 ECC RDIMM |
Жесткий диск | 4 × 4 TB 3.5inch Serial ATA (7,200 оборотов в минуту) жесткий диск |
контроллер HDD | PERC H310 SATA / SAS Conтроллер для Dell Precision |
Конфигурация HDD | C1 SATA 3,5 дюйма, 1-4 Жесткие диски |
Графика | Двойной 2 Гб NVIDIA Quadro 4000 (2 карты W / 2 DP & 1 DVI-I каждый) (2 DP-DVI и 2 переходника DVI-VGA) (MRGA17H) |
сеть | Intel X520-T2 двухпортовый 10 GbE карты сетевого интерфейса |
Таблица 4: Требования к оборудованию.
Скорость обработки данных
Время, необходимое для обработки данных зависит от размеров данных и от используемого аппаратного обеспечения. В таблице 1 мы приводим краткий обзор времени , необходимого для ключевых шагов в обработке GB пример набора данных множественного 8.6 , который состоял из 1 временной точки с 4 – мя видами и 2 каналами.
Обработка sТЭП | Время | шаг протокола |
Пересохраните, как HDF5 | 6 мин 30 сек | 6.3 |
Обнаружение процентного пункта | 20 сек | 6.4 |
Регистрация с использованием процентных пунктов | 3 сек | 6.5 |
Контент на основе MultiView фьюжн | 4 ч | 7.2 |
Multiview деконволюции (CPU) | 8 ч | 7.3 |
Multiview деконволюции (GPU) | 2 ч | 7.3 |
Таблица 1: Данные времени обработки.
Форматы входных данных для MULTIVIEW реконструкции
Фиджи Плагин Multiview Реконструкция может поддерживать .czi, TIF и форматы ome.tiff. Из-за структуры данных .czi формата, прерывистые наборы данных не являютсяподдерживается без предварительной обработки. Прерывистое означает , что запись должна была быть перезапущен (например , чтобы скорректировать свои позиции из – за дрейфа образца). В этом случае .czi файлы должны быть повторно сохранены в качестве .tif. Для .tif файлов каждый вид и направление освещения должно быть сохранено в виде отдельного файла.
Калибровка размера пикселя
Микроскоп-операционное программное обеспечение вычисляет калибровки для размера ху пикселя в зависимости от выбранной цели. Тем не менее, размер пикселя в Z определяется независимо от размера шага. Если неправильная цель задается в программном обеспечении ху для г соотношение неверно и регистрация будет выполнена.
Первичная регистрация
После определения набора данных количество регистраций будет 1 , и число процентных пунктов будет равен 0 в ViewSetup Explorer. Первоначальная регистрация представляет собой калибровку набора данных. Как число OF регистраций и процентные пункты будут увеличиваться во время обработки.
Вниз выборки для выявления процентного пункта
Использование вниз выборки рекомендуется, так как загрузка файлов и сегментации будет намного быстрее. Важно, однако, отметить, что параметры обнаружения будет меняться в зависимости от выборки вниз, таким образом, передавая параметры обнаружения между различными настройками вниз образца не представляется возможным.
Обнаружение процентного пункта
Желательно, чтобы сегмент как много истинных шариков, как это возможно в каждом ракурсе, даже по цене получения некоторых ложных положительных обнаружений, потому что они не препятствуют регистрации значительно. Ложные обнаружений, если их мало чисел, исключаются при регистрации (См регистрации процентных пунктов). Тем не менее, массовые ложноположительных обнаружений создают проблему для алгоритма. Это не только снижает производительность для обнаружения ирегистрация, так как она занимает гораздо больше времени для сегментации изображения, а также сравнить эти шарики между видами, но и снижает точность регистрации. Эту проблему можно решить, используя более строгие параметры обнаружения. Кроме того, более сегментации гранул (например , несколько на вирусах и вредоносных одном бортовом фиг.1Е) губительно для регистрации и его следует избегать.
Регистрация процентных пунктов
Для регистрации взглядов друг на друга, местоположение каждого шарика в каждом ракурсе описывается ее положение относительно трех ближайших соседних бусин. Эти созвездия формируют локальный геометрический дескриптор и позволяют сравнивать каждую бусинку между видами. Бусинки с совпадающими описатель между двумя видами затем рассматриваются в качестве кандидатов соответствий. Обратите внимание, что это работает только для случайно распределенных шариков, для которых локальные дескрипторы, как правило, уникальны для каждого шарика.Можно использовать и другие структуры, такие, как ядер в образце для регистрации. Тем не менее, для того , чтобы обнаружить ядра, которые распределены не случайным образом в образце, другие методы применяются 20,21.
Кандидаты соответствиями затем тестировали против RANSAC 36, чтобы исключить ложные срабатывания. Каждая переписка указывает модель преобразования для наложения взглядов друг на друга. Правда соответствия, скорее всего, согласятся на одной модели трансформации, тогда как останцы бы каждый пункт другой. Истинные соответствиями затем используются для вычисления аффинного преобразования модели между двумя сравниваемыми видом. Глобальная оптимизация с помощью алгоритма итеративного оптимизации Затем проводят, в течение которого все виды регистрируются на первый взгляд , с целью минимального перемещения между видами 20,21.
Время регистрации замедленной
Из-за перемещениятвом в агарозном геле и неточной двигателя движения предметный столик микроскопа, положение каждого стека изменяется умеренно в течение долгого времени. В то время как регистрация отдельного момента времени устраняет разницу между взглядами этого момента времени, то заданный промежуток времени также должен быть зарегистрирован в целом. С этой целью, каждый отдельный момент времени регистрируется на контрольной точке времени.
пункт Ориентировочное время
Если временной ряд с большим количеством моментов времени обработки, изображающую точку времени выбирается в качестве ссылки, как правило, с середины временного ряда, так как интенсивность шарик может деградировать с течением времени из-за отбеливания. На этой ссылке, параметры для обнаружения процентных пункта, регистрации, ограничивающего параллелепипеда и слияния может быть определена. Затем эти параметры применяются ко всему промежутка времени, чтобы вычислить конкретную модель преобразования для каждой отдельной точки времени. Во время регистрации в заданный промежуток времени все другие моменты времени также REGISTERed пространственно на этот опорный момент времени. Таким образом, параметры ограничивающая коробка для всей записи зависят от этой конкретной точке времени.
Многоканальная регистрация
При визуализации нескольких каналов, в идеале одни и те же флуоресцентные шарики должны быть видны во всех отображенных каналах. Обнаружение и регистрация может быть выполнена индивидуально для каждого канала, который учитывает влияние различных длин волн света на трансформацию. Зачастую это невозможно, так как гранулы не видны во всех каналах или шарики доминирующий изображение слишком много в одном канале, и слишком тусклым в другом канале (ах). Типичное решение заключается в использовании бус видимые только в одном канале для обнаружения и регистрации и модели приобретенного преобразования (т.е. после обнаружения, регистрации и регистрации в заданный промежуток времени) затем применяется к другим каналам Фиджи> Плагины> Multiview Reconstrед ен ие> Пакетная обработка> Инструменты> Повторяющиеся Трансформации. В раскрывающемся меню для параметра Применить преобразование выбора одного канала на другие каналы. В следующем окне выберите XML и нажмите кнопку OK. Затем выберите канал, содержащий бусинки в качестве исходного канала и в качестве целевого канала выберите канал (ы) без шариков. Для получения дубликата , которые преобразования используют Заменить все преобразования и нажмите OK. Преобразования затем копируются на все другие каналы и сохраняются в XML. Чтобы увидеть новые преобразования в ViewSetup проводнике, перезапустить MultiView Реконструкция приложения.
Ограничительная рамка
Слияние нескольких представлений является вычислительно очень интенсивно. Тем не менее, большие изображения, как правило, приобрели для размещения не только образец, но и бусинки вокруг него. После регистрации параметраs извлекаются из гранул, то они больше не являются полезными в качестве части изображения. Поэтому, чтобы увеличить эффективность слияния, только те части изображения стеки, содержащих образец должен быть сплавлены друг с другом. Область интереса (ограничивающего параллелепипеда) должен быть определен, чтобы содержать образец и как мало окружающих агарозы, насколько это возможно. Для примера на рисунке 2 средневзвешенным слитый на всем объеме с 2229 × 2136 × 2106 точек потребуется 38,196 Мб оперативной памяти, в то время как с коробкой , ограничивающей объем уменьшается до 1634 × 1746 × 1632 точек и требования к памяти снижаются до 17,729 МБ.
Контент на основе MultiView фьюжн
Проблема в фьюзинг данных множественного является то, что мнения, как правило, заканчиваются резко и не содержат одинаковое качество изображения для одних и тех же вокселей. Поэтому простое усреднение мнений приведет к наложения артефактов и ненужного ухудшения качества изображения. Контент на основе MultiView фу Sion принимает обе эти проблемы во внимание. Во- первых, он смешивает различные точки зрения, где одно изображение заканчивается , а другой начинается , и во- вторых, он оценивает местное качество изображения и применяет более высокие весовые коэффициенты для более высокого качества изображения в слиянии 21. По сравнению с одним видом есть улучшение резолюции в г с небольшим ухудшением сигнала в ху (рис 2E-H, Рисунок 5A-D).
Multiview деконволюции
Multiview деконволюции другой подход для достижения слияния взглядов. С помощью этого метода также PSFs различных взглядов принимаются во внимание для того, чтобы восстановить изображение, которое было свернут по оптике микроскопа. Этот метод значительно улучшает качество изображения путем удаления размытость изображения и повышения разрешающей способности и контрастности сигнала 31 (рис 2C-D, Рисунок 2I-J, Рис 5E-G, Movie 3).
ve_content "> Деконволюция вычислительно очень интенсивно (см таблицу 1), при этом с помощью GPU для обработки увеличивает скорость этого процесса. Кроме того , может быть необходимо для выполнения деконволюции вниз выборку данных. вниз образца, используйте Реконструкция Фиджи> MULTIVIEW > Пакетная обработка> Инструменты> нанести трансформации. Это будет применяться новая модель преобразования на представления , которые будут сохранены в файле .xml.HDF5 формат файла для BigDataViewer и BigDataServer
BigDataViewer 33 позволяет легко визуализировать данные терабайт размера. Как контролировать BigDataViewer представлены в таблице 2. В демо основной работы программы также доступна в качестве дополнения в его первоначальной публикации 33. BigDataViewer сосредоточен на файл .xml, который содержит метаданные, и файл hdf5, который содержит данные изображения. Данные изображения являются Presлор в HDF5 в нескольких уровнях разрешения в 3D-блоков. Многочисленные уровни разрешения позволяют визуализировать данные быстрее, с более низким разрешением, до полного разрешения загружен. Отдельные блоки только загружаются в память, когда это необходимо. Таким образом, формат hdf5 изображения позволяет устанавливать прямую и быструю визуализацию данных через BigDataViewer 33. Она также ускоряет обработку, так как загрузка файлов осуществляется более эффективно. Поэтому мы рекомендуем resaving набор данных в этот формат, хотя это не является строго обязательным для обработки. Для более подробного объяснения формата данных, пожалуйста , обратитесь к Ссылка 3 . Кроме того, наборы данных могут использоваться совместно с сотрудниками или общественности с помощью BigDataServer 33 ( ссылка 6 ).
ключ | <td> эффект|
F1 | показывает справку с кратким описанием BigDataViewer и его основной операции |
<> Или колесо мыши | движение в г |
стрелок вверх и вниз | увеличивать и уменьшать масштаб |
правой кнопкой мыши и перетащить | перемещает образец в зрителя |
щелкните левой кнопкой мыши и перетащите | вращается вокруг образца курсора |
ползунок в нижней части зрителя или Tab и стрелку влево или вправо | движется по оси времени |
дополнительно нажав сдвиг | быстрее движение или вращение по любой оси |
х, а затем влево и вправо стрелка | вращается вокруг оси х |
у, а затем влево и вправо стрелка | вращается вокруг оси у |
г, а затем влево и вправо стрелка | вращается вокруг оси г |
сдвиг и х | ориентирует вид вдоль оси х |
сдвиг и у | ориентирует вид вдоль оси у |
сдвиг и г | ориентирует вид вдоль оси г |
я | переключение между различными режимами интерполяции (т.е. ближайшего соседа и трилинейные) |
s или Настройки> Яркость и Контраст | изменяет цвет каналов, яркость и контрастность |
F6 или Настройки> Видимость и группировка | изменяет отображаемые группы, позволяет группировать для наложения различных групп и вызова групп с помощью цифровых клавиш |
F10 или Инструменты> Запись фильма | приобретает временные ряды отображаемой в данный момент среза |
Таблица 2: Big Data Viewer.
3. Ограничения описанной реализации LSFM
Низкая пропускная способность
В типичном эксперименте LSFM только один образец на эксперимент визуализируется. Тем не менее, по нашему опыту, много полезной информации можно извлечь из этого единого образца. Высокая производительность визуализации нескольких эмбрионов было недавно достигнуто в домах , построенных LSFM установок 46-48, хотя , как правило , за счет свободы позиционирования образца и вращения.
глубокое проникновение в вашем тканях
Несмотря на то, данио эмбрионы являются полупрозрачными, полученное качество изображения ухудшается быстро при визуализации глубже в ткани из-за рассеяния и поглощения. Частично это эффект рассеяния и поглощения излученной флуоресценции образца и не могут быть исправлены в текущей настройке. Другим источником неравномерного качества изображения является неравномерное освещение. Tон свет лист падает с левой или с правой стороны и любые объекты на своем пути преломлять его, что приводит к полоской артефактов и размытости. Двухсторонний освещение и MultiView слияние может уменьшить артефакты в окончательном изображении. И, наконец, качество изображения имеет тенденцию быть немного хуже, в направлении к краю поля зрения из-за естественной геометрии светового листа, которая становится толще по направлению к краям.
Ограниченная химическая обработка
Употребление наркотиков или ингибиторов широко распространена в данио исследования. В этом микроскопе употребление наркотиков сдерживается из-за большого объема камеры образца и соображений других пользователей инструмента, которые разделяют ту же самую камеру. Использование дополнительной камеры предназначен для проведения экспериментов с наркотиками может решить эту проблему. Заполнения камеры частично со стеклянными шариками уменьшает объем жидкости, который требуется.
Нет photomanipulation
CurrenTLY нет никакой возможности локализованного оптическое манипулирование как фотоконверсии или лазерной абляции в этом микроскопом. Тем не менее, дом, построенный установки могут быть использованы для таких специфических применений.
4. Значение и будущих приложений
LSFM является лучшим методом, доступным на сегодняшний день для быстрой визуализации больших объемов живых эмбрионов. Большинство экспериментов мыслимых на конфокальной микроскопии может быть также выполнена на светлом листе микроскопа с вышеупомянутыми преимуществами. В случае визуализации развития глаза, скорость LSFM не является критическим параметром. Вместо этого, низкая фототоксичности и гибкость в позиционировании образца являются решающими преимущества.
Данные LSFM имеют высокое SNR, который помогает достичь хороших результатов деконволюции, а также полезно для анализа изображения в автоматическом режиме и слежение за объектом. В заключение LSFM является отличным инструментом для генерирования поддающихся количественной оценке данных о эмбриональном развитии и OveraLL клеток и характеристики ткани для последующего моделирования и физических описаний рассматриваемых процессов.
The authors have nothing to disclose.
We want to thank Tobias Pietzsch for providing his powerful open source software BigDataViewer. We thank the Light Microscopy Facility of the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), namely Jan Peychl, Sebastian Bundschuh and Davide Accardi for technical assistance, perfect maintenance of the microscopes used in the study and for comments on the manuscript and H. Moon (MPI-CBG Scientific Computing Facility) for the BigDataServer. We thank Julia Eichhorn for assembling the Movie 1. The Norden lab members and Svea Grieb provided many helpful comments on the manuscript. Jaroslav Icha, Christopher Schmied and Jaydeep Sidhaye are members of the International Max Planck Research School for Cell, Developmental and Systems Biology and doctoral students at TU Dresden. Pavel Tomancak is supported by the ERC Starting Grant: Quantitative Analysis of the Hourglass Model of Evolution of Development and Human Frontier Science Program Young Investigator grant RGY0093/2012. Caren Norden is supported by the Human Frontier Science Program (CDA-00007/2011) and the German Research Foundation (DFG) [SFB 655, A25].
Lightsheet Z.1 microscope | Carl Zeiss Microscopy | ||
Low melting point agarose | Roth | 6351.1 | |
Low melting point agarose | Sigma | A4018 or A9414 | |
Ethyl 3-aminobenzoate methanesulfonate (MESAB/MS-222/Tricaine) | Sigma | E10521 | |
N-Phenylthiourea (PTU) | Sigma | P7629 | |
500 nm red fluorescent beads F-Y 050 | Millipore (Estapor) | 80380495 | |
20 μl (1mm inner diameter, marked black) capilllaries | Brand | 701904 | sold as spare part for transferpettor |
Teflon tip plungers for 20 μl capillaries | Brand | 701932 | sold as spare part for transferpettor |
Circular glass coverslips diameter 18 mm, selected thickness 0.17 mm | Thermo scientific (Menzel-Glaser) | ||
O-rings for chamber windows 17×1.5 mm | Carl Zeiss Microscopy | ||
Tweezers, style 55 | Dumont | 0209-55-PO | |
50 ml Luer-Lock syringes | Becton Dickinson | 300865 | |
150 cm extension cable for infusion compatible with Luer-Lock syringes | Becton Dickinson | 397400 | |
Links | |||
Link 1 Multiview reconstruction application | https://github.com/bigdataviewer/SPIM_Registration http://fiji.sc/Multiview-Reconstruction | ||
Link 2 BigDataViewer | https://github.com/bigdataviewer | ||
Link 3 BigDataViewer | http://fiji.sc/BigDataViewer | ||
Link 4 Multiview reconstruction application-issues | https://github.com/bigdataviewer/SPIM_Registration/issues | ||
Link 5 BigDataViewer-issues | https://github.com/bigdataviewer/bigdataviewer_fiji/issues | ||
Link 6 BigDataServer | http://fiji.sc/BigDataServer. |