Intravenous administration of endotoxin reliably elicits dose-dependent physiological and immunological alterations consistent with several pathological states. This reductionist approach permits the investigation, modeling and experimental modification of systemic inflammation and its downstream effects in man.
Activation of inflammatory pathways represents a central mechanism in multiple disease states both acute and chronic. Triggered via either pathogen or tissue damage-associated molecular motifs, common biochemical pathways lead to conserved yet variable physiological and immunological alterations. Dissection and delineation of the determinants and mechanisms underlying phenotypic variance in response is expected to yield novel therapeutic advances.
Intravenous (IV) administration of endotoxin (gram-negative bacterial lipopolysaccharide), a specific Toll-like receptor 4 agonist, represents an in vivo model of systemic inflammation in man. National Institutes for Health Clinical Center Reference Endotoxin (CCRE, Escherichia coli O:113:H10:K negative) is employed to reliably and reproducibly generate vascular, hematological, endocrine, immunological and organ-specific functional effects that parallel, to varying degrees, those seen in the early stages of pathological states. Alteration of dose (0.06 – 4 ng/kg) and time-scale of exposure (bolus vs. infusion) allows replication of either acute or chronic inflammation and a range of severity to be elicited, with higher doses (2 – 4 ng/kg) frequently being used to create a 'sepsis-like' state. Established and novel medicinal compounds may additionally be administered prior to or post endotoxin exposure to appreciate their effect on the inflammatory cascade. Despite limitations in scope and generalizability, human IV endotoxin challenge offers a unique platform to gain mechanistic insights into inducible physiological responses and inflammatory pathways. Rationally employed it may aid translation of this knowledge into therapeutic innovations.
Inflammation of differing etiology, severity and duration forms a central component in the pathology of multiple diseases. Ranging from the critical illness states such as sepsis or trauma where severe, relatively short lived inflammation predominates, to chronic illnesses including type 2 diabetes mellitus, atherosclerosis and Alzheimer's disease where persistent low-level inflammatory tone is considered a pathologic factor, dysregulated inflammatory pathways are a key driver of global morbidity and mortality1,2.
Inflammation is initiated by the presence of pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) — commonly intracellular components released via tissue damage3-5. These conserved molecular motifs bind pattern-recognition receptors (PRRs) such as Toll-like receptors (TLRs) found on epithelial cells, endothelial cells and those of the innate immune system, to trigger common downstream intracellular signaling pathways6. Activation of the nuclear transcription factor nuclear factor κB, amongst others, leads to transcription of genes encoding pro-inflammatory cytokines that establish the inflammatory cascade7.
Inflammation induces both local and systemic effects designed to isolate and remove the primary insult. Local alterations include up-regulation of adhesion markers, chemokine release, vasodilation and increased vascular permeability to facilitate innate immune cell transmigration. The complement and coagulation systems are also activated. Systemically, multiple organ-specific physiological changes are observed, orchestrated via the neuroendocrine network. Significant increases in humoral mediators occur and the circulating cell profile radically alters. Failure of inflammation to cease and homeostasis to be reestablished may be due to persistence of the initiating stimuli or a failure of dedicated resolution pathways8. These potent mechanisms, often coordinated by lipid mediators may themselves be pathogenic9,10.
Investigation of the inflammatory response and these key regulatory steps in the clinical population is challenging. Demographic (age, sex, ethnicity), temporal (time of onset, duration of exposure) and clinical variance (type of initiating stimuli, severity of insult, co-morbidity burden, therapeutic intervention) impede access to key biological pathways. The traditional solution has been to use animal models. Despite affording multiple advantages, their fundamental similarity to human pathophysiology11,12 and the relevance of their output, has come under increasing scrutiny13-15. An alternative is to employ reductionist human models.
Developed in the late 1960s, intravenous (IV) endotoxin administration to man offers a vital platform through which to discover, delineate and potentially drug inflammatory pathways16-19. Endotoxin (used synonymously with lipopolysaccharide [LPS] in this article) is a potent TLR4 agonist that triggers the inflammatory cascade in a dose-dependent manner. Injected as either a bolus or infusion it may thus be used to model both low-level and moderate systemic inflammation of differing duration. The resultant short-lived inflammatory response permits assessment of a single component of the highly complex host-pathogen interaction that develops during bacterial infection. While not a model of shock, IV endotoxin challenges elicits responses that appear to replicate the early stages of infection. Eliminating inter-species translational barriers and accurately mimicking the clinical phenotype qualitatively if not quantitatively, it affords real-time interpretation of inflammatory influences, consequences and an opportunity to test interventions. Endotoxin may also be administered endobronchially20, intradermally21 or in combination with IV LPS22 to explore local inflammatory responses in different compartments. Less widely employed alternative methodologies include infusion of proximal pro-inflammatory cytokines such as tumor necrosis factor α (TNFα) and interleukin (IL) 619. These will not be discussed further here.
University College London REC (UK) approved the study that generated the data presented in the representative results section (Reference 5060/001).
ETHICAL APPROVAL:
The majority of studies using IV endotoxin challenges have been conducted in healthy subjects. As this research has no health benefit, the importance of the study objectives should clearly outweigh any inherent risks. This is relevant when considering the interactions with novel agents used to modify inflammation and that have the potential to exaggerate host responses to endotoxin (e.g., fever, changes in blood pressures, symptoms).
Prior to the commencement of any study employing IV endotoxin, approval must be sought and obtained from an appropriate Research Ethics Committee (REC) / Institutional Review Board (IRB). IV endotoxin administration has been employed for over forty years to gain important mechanistic insights into human biology with no serious or lasting adverse effects to our, or other author's, knowledge19. Given the model's potential to yield vital information pertaining to multiple inflammatory conditions that are major causes of mortality and morbidity, we believe it is ethically acceptable to expose healthy volunteers and defined demographic or clinical groups to endotoxin, provided appropriate risk minimization strategies are in place. This may require independent outside review by qualified experts and or pilot studies to ensure safe conduct of the investigations, particularly when employing new agents and their interaction with endotoxin- induced inflammation.
Preparation
1. Determine the Demographic and Clinical Characteristics of Participants
NOTE: The majority of studies employing IV endotoxin challenge recruit healthy young male volunteers < 30 year old. Studies have additionally been undertaken on healthy women23, older volunteers24,25 and patient subgroups26 depending on the experimental question. Elderly participants (i.e., greater than 60 years of age) may have a greater and more sustained response (higher fever, greater decrease in blood pressure), and interactions of endotoxin-induced inflammation with any co-morbid conditions or medications must be considered in the design of these studies. Please see discussion for further considerations in participant selection.
2. Recruit Participants
3. Obtain Formal Informed Consent
4. Undertake a 'Health Screen' on Potential Participants
NOTE: This is to ensure the absence of undisclosed medical conditions that place them at greater risk of harm from IV endotoxin. As a secondary aim information relevant to the experimental question may be identified.
5. Inform Participants Proceeding to IV Endotoxin Challenge to;
Procédure
6. Endotoxin Challenge (Prior to Endotoxin Administration)
7. Monitoring, Observation and Sample Draw
8. End of Procedure
The diverse, multi-system consequences of IV endotoxin administration have recently been comprehensively reviewed and will not be discussed in full here (for full details see17-19,27). Instead a brief overview of the range and applicability of the model will be provided alongside primary data pertaining to the classic bolus-dosing regimen (2 ng/kg). A schematic diagram illustrating the timeline of such an experiment is provided in Figure 1.
Figure 1: Representative Schematic of Bolus IV Endotoxin Challenge Protocol. After arrival, participant's consent to proceed should be confirmed along with their health status and protocol compliance (fasting, alcohol abstention, etc.). Following insertion of intravascular lines, attachment of monitoring and collection of baseline clinical observations and samples, a weight-adjusted dose of reconstituted CCRE is administered. Clinical monitoring for a minimum of 6 – 8 hr is mandatory. Samples, most commonly blood, may be taken at pre-selected time-points. Crystalloid intravenous fluids are commonly given, in this case 1 L over 2 hr followed by 1 L over 6 hr. Please click here to view a larger version of this figure.
The effect of IV endotoxin is dependent upon the dose selected and the method of administration (bolus vs. infusion). A bolus of 2 – 4 ng/kg reliably elicits the features of the systemic inflammatory response syndrome with raised core temperature, heart rate and white blood cell (WBC) count16. This is accompanied by the presence of humoral mediators of inflammation including pro and anti-inflammatory cytokines, acute phase proteins (such as C-reactive protein) (see Figures 2 and 3) and activation of the hypothalamo-pituitary axis28 and both the pro-coagulatory and fibrinolytic systems29. Metabolism in both central and peripheral tissues is altered and multiple organ-specific functional alterations elicited19,30. Participants experience a variety of 'flu-like' symptoms that peak in intensity around 1 – 2 hr and largely abate by 6 hr (see Figure 4). The bolus 'high-dose' protocol induces a qualitatively consistent but quantitatively variable response in volunteers31.
Figure 2: Clinical Observation Profile. Change in vital signs post-bolus administration of Clinical Center Reference Endotoxin 2 ng/kg (median with IQR, n = 10). Respiratory rate (RR, breaths per min, A), pulse (beats per min, B), systolic blood pressure (SBP, mmHg, C) and temperature (°C, via tympanic thermometer, D) are displayed. SBP did not fall due to administration of IV fluids, the small rise likely reflecting increased sympathetic outflow. Time is displayed on the x-axis (hr post-endotoxin administration). Please click here to view a larger version of this figure.
Figure 3: Cellular and Humoral Response. Consistent alterations in total leukocyte count, including transient neutrophilia, are observed (A) along with commonly used clinical indicators of inflammation such as C-reactive protein (B). Quantitatively varied, yet qualitatively conserved alterations in circulating plasma cytokine concentrations occur after IV endotoxin. TNFα (C) and IL-6 (D) are displayed as exemplars. All data post-bolus administration of Clinical Center Reference Endotoxin 2 ng/kg (median with IQR, n = 10. Cytokine concentration represents the mean of 2 technical repeats/individual at each time point). Please click here to view a larger version of this figure.
Figure 4: Symptom Profile. Cumulative symptom score recorded at pre-determined time-points post-bolus administration of Clinical Center Reference Endotoxin 2 ng/kg (median with IQR, n = 10). Participants were asked to score the severity of headache, shivering, muscle ache, nausea on visual analogue scales (0 – 10, max score 40). Please click here to view a larger version of this figure.
'Low-dose' endotoxin in contrast has a much more diverse effect on individuals and may be used to explore inter-individual differences in the inflammatory response31. Administration of 0.06 – 0.2 ng/kg via either bolus or infusion induces 2 – 10 fold increases in plasma cytokines commensurate with those seen in chronic low-grade inflammatory conditions32. Such protocols may have a key role in exploring the contribution of inflammation and the pathways that regulate it to multiple complex cardiometabolic conditions27.
As demonstrated here and fully described in recent review articles, human IV endotoxin challenge is a unique experimental platform providing insight into the inflammatory pathways that underlie a vast range of human disease. Allowing the controlled, reproducible induction of systemic inflammation, the model permits access to the initial phases of the inflammatory cascade, eliminating potential confounding factors.
Participant's responses may be modulated with respect to severity and duration, and the genomic influence on their phenotypic presentation evaluated. Furthermore, the model may act as a test-bed for therapeutics, not only those against the LPS ligand itself, but LPS-induced signaling pathways and mediators of both the acute and resolution phases of inflammation. This may include agents targeted at restoration of endotoxin tolerance, a hyporesponsive state of the immune system that bears similarities to critical illness-induced immunoparalysis33,34 Able to replicate key features of both acute16 and chronic27 inflammation at not only a physiological/functional level but also a transcriptomic one35, IV endotoxin challenge seemingly has a key role to play in the translation of basic scientific breakthroughs to clinical practice. When coupled to directed investigation in appropriate animal models able to more closely replicate the pathophysiological responses of specific disease states (e.g., murine cecal ligation and puncture and sepsis) this investigational paradigm may be especially powerful.
Safety of participants in any healthy human volunteer model is paramount. IV endotoxin challenge has been administered in the higher dose range of 2 – 4 ng/kg to thousands of individuals with, to our and other authors knowledge, no serious or permanent adverse events (personal communication, Dr. Anthony Suffredini)19. Of note however isolated accounts of severe vagal reactions have been reported36,37. The etiology presumably represents high resting vagal tone, volume depletion after overnight fasting, and catecholamine release with the onset of fever, chills and symptoms, culminating in an exaggerated Bezold-Jarisch reflex. This risk may be ameliorated by excluding individuals with previous vasovagal syncopy or a positive tilt-test, and volume loading with intravenous fluids prior to and during the endotoxin challenge37. Researchers employing high-dose endotoxin challenge (especially 4 ng/kg) should be cogent of the risk of bradycardia and/or cardiac pauses, warn participants of their rare but potential occurrence, employ appropriate monitoring, and have resuscitation equipment readily available. Other exclusion criteria, in addition to those described in the protocol, may be required dependent on experimental question. For instance, whilst it is prudent to exclude those that have participated in other clinical trials or experienced surgery/trauma in the past three months, restriction of entry (or use of a parallel-groups not a cross-over design in interventional studies) to those that have previously partaken in IV endotoxin challenge trials may also be required if immunological response is to be assessed: endotoxin tolerance persisting for an unknown length of time in vivo38,39.
Several limitations are apparent with the model. It is traditionally undertaken in healthy, young male volunteers un-representative of the clinical population. No interventions are required for the phenotypic consequences of endotoxin administration to resolve. Purified LPS injection provides exposure to only a single TLR ligand, as opposed to several immunogenic moieties on a live pathogen. By ethical necessity only a relatively modest inflammatory response may be elicited. Mimicry of every pathophysiological characteristic feature of disease is not achieved40. Thus 'any expectation that the model fully replicates the clinical condition of severe, localized or systemic gram-negative infection is un-warranted'18.
We would argue however that the model's strength lies not in inappropriate extrapolation to the clinical setting, but in interrogating the physiological, hematological, immunological, neuroendocrine and metabolic response of competent cells and organ systems to a key inflammatory stimulus. Thoughtful interpretation of the transient alterations provoked by endotoxin administration and their modulation by pharmacological challenge has been, and will continue to be, informative in designing new therapies and predicting their efficacy.
The authors have nothing to disclose.
The authors would like to thank Dr. Anthony Suffredini (Critical Care Medicine Department, National Institutes for Health Clinical Center, Bethesda, USA) for his careful review of the manuscript and many thoughtful suggestions. We would also like to thank the National Institutes of Health for making freely available the Clinical Center Reference Endotoxin employed within this study.
JNF and DWG are funded by the Wellcome Trust, which supported the generation of the described data and the publication of this article.
Clinical Center Reference Endotoxin (CCRE, Escherichia coli O:113:H10:K negative) | National Institutes for Health | n/a | GMP Manufactured Endotoxin |
Syringes (1ml, 5ml) | |||
Water for injection | |||
0.9% sodium chloide (sterile, clinical grade) | |||
Intravenous cannulae | Miminum 20G French | ||
Sphygmomanometer | If intraarterial line placed, transduction equipment for invasive blood pressure monitoring | ||
Pulse oximeter | |||
Thermometer | Typmanic, oral or core (rectal, oropharyngeal) | ||
Electrocardiograph machine | |||
Sample collection tubes | As utilized by local clinical laboratory |