Summary

实验协议来调查产品的粒子雾化在耐磨和环境下风化

Published: September 16, 2016
doi:

Summary

在这篇文章中,一个试验性协议,调查下磨损和风化环境下,提出了一种产品的粒子雾化。关于工程纳米材料的排放,在气雾剂的形式结果。具体实验装置进行详细说明。

Abstract

The present article presents an experimental protocol to investigate particle aerosolization of a product under abrasion and under environmental weathering, which is a fundamental element to the approach of nanosafety-by-design of nanostructured products for their durable development. This approach is basically a preemptive one in which the focus is put on minimizing the emission of engineered nanomaterials’ aerosols during the usage phase of the product’s life cycle. This can be attained by altering its material properties during its design phase without compromising with any of its added benefits. In this article, an experimental protocol is presented to investigate the nanosafety-by-design of three commercial nanostructured products with respect to their mechanical solicitation and environmental weathering. The means chosen for applying the mechanical solicitation is an abrasion process and for the environmental weathering, it is an accelerated UV exposure in the presence of humidity and heat. The eventual emission of engineered nanomaterials is studied in terms of their number concentration, size distribution, morphology and chemical composition. The purpose of the protocol is to study the emission for test samples and experimental conditions which are corresponding to real life situations. It was found that the application of the mechanical stresses alone emits the engineered nanomaterials’ aerosols in which the engineered nanomaterial is always embedded inside the product matrix, thus, a representative product element. In such a case, the emitted aerosols comprise of both nanoparticles as well as microparticles. But if the mechanical stresses are coupled with the environmental weathering, the experimental protocol reveals then the eventual deterioration of the product, after a certain weathering duration, may lead to the emission of the free engineered nanomaterial aerosols too.

Introduction

随着纳米技术的迅速成熟,它的发展是由含工程纳米材料 (ENM)具有显着的性能的产品快速商业化驱动。在文章中通过Potocnick 1描述18(5)规例2011分之1169,由欧盟委员会颁发的,ENM可以被定义为“任何故意制造的材料,含颗粒,未结合状态或作为骨料或作为凝聚并且其中,在数尺寸分布的颗粒的50%或更多,一个或多个外部尺寸在尺寸范围为1纳米至100纳米。“此外,含有ENM的产品,无论是在其固体散装或它们的固体表面上或在其液体悬浮液,可称为纳米产品 。不同类型的安宁与不同的配方和functionalizations在此类产品根据应用和预算的性质使用。该产品可以在浣熊的形式NGS,油漆,瓷砖,砖房子,混凝土等ê。

至于研究而言,人们也可能会发现在已经通过纳米技术完成的创新出版物数量巨大。尽管这一巨大的研究,ENM的吸引人的特征是根据探针的潜在的健康或环境的危害,因为它们倾向纳米结构的产品的使用或处理(例如Oberdorster 中得到释放,或以气雾剂的形式在空气中发射的2,乐逼捍 3和好迪4)。 Kulkarni 。5定义的气雾剂如在气态介质中的悬浮的固体或液体颗粒。 Hsu和Chein 6表明,纳米结构产品的使用或加工过程中,纳米结构产物经受各种机械应力和环境的耐候便于这种排放。

据梅纳德7,经曝光,ENM这些气溶胶可以与人体组织通过吸入或皮肤接触互动,并获得其沉积从而可能引起各种不利影响,包括致癌的人体内。因此,的ENM发射现象的透彻理解是非常重要的给予前所未有的使用纳米结构的产品,如由夏特金等人 8提及。这可能不会避免从他们接触所产生的意想不到的健康相关的并发症,而且在鼓励纳米技术的信心只会帮助。

然而,在曝光相关的问题,现在已经开始研究界越来越关注和最近已经由各个研究单位在世界各地突出显示(例如,Hsu和Chein 6,Göhler 等人 9,Allen 等人。 <suP> 10,Allen等人 11的Al-Kattan等人12,Kaegi等人13,希斯等人 14,Shandilya 等人 15,31,33,Wohlleben 等人 16,Bouillard 等。 17,Ounoughene 等人18)。考虑到商业市场产品纳米结构的大规模部署,来解决这个问题最有效的办法是先发制人的。在这样的方法中,产品的设计以这样一种方式,它是“nanosafe逐个设计”或“更安全纳米技术设计”(忧郁19), 即 ​​,低发射。换句话说,它在问题最大化他们的好处,同时在环境中发射气溶胶的最小量的使用过程中解决。

期间的纳米结构产品的使用相测试纳米安全逐设计中,作者提出了一个适当的实验方法本文章中这样做。此方法包括两种类型招揽的:(ⅰ) 机械和(ii) 环境旨在在模拟真实生活讲到的纳米结构产品,砖石砖时,在其使用量相进行。

(i)在模拟机械征集线性擦伤设备。原文和商业形式, 如图1A中所示,在众多的国际公认的测试标准被引用一样ASTM D4060 20,ASTM D6037 21和ASTM D1044 22。根据Golanski 等人 23,由于其强大的和用户友好的设计,其原来的形式已经被广泛地应用于工业,用于分析的产品,如油漆,涂料,金属,纸张,织物等的应力作为表现通过该装置施加对应于家庭环境所施加的典型的,例如,以正鞋和在家庭的不同对象的位移(Vorbau 等人 24和​​Hassan 等人25)。图1A中,一个水平移动杆移动在一个标准的研磨材料来来回回在样品表面运动。磨耗在接触表面的发生是由于在接触的摩擦。磨耗的幅度可以通过改变哪些作用在磨料顶部的正常负荷(F N)来改变。通过改变磨料和正常负载值的类型,可以改变磨蚀,因此机械应力。 Morgeneyer 等人 26都指出磨损期间将被测量的应力张量由正常和切向分量的。正应力是正常的负载, ,F N的直接结果,而切向应力是第的结果È切向动作的摩擦过程中,由于力(F T)的测定,它的作用平行或反平行于磨损发生的方向。在此磨损装置的原始形式,不能确定F T。因此,机械应力ENM的气雾化过程中的作用不能完全确定。消除这种限制,如由Morgeneyer 26中详细描述的,我们已经(a)由铝2024合金副本替换已安装的水平钢条修改它和(b)安装在所述顶表面上的应变计这个复制的铝合金棒。这示于图1B。这种应变仪具有测量活动的栅长为1.5毫米和测量电网运营商长度5.7毫米。它是由具有3.8微米的厚度和应变系数为1.95±1.5%康铜箔。的机械应力的正确的测量是通过被连接在串联的应变计,由此允许在压力表产生的应变的一个可靠的测量动态应变放大器确保。通过放大器传送的数据是利用数据采集软件收购。

图1
图1.磨损的装置和应变仪。在Taber磨耗装置(A)和磨损速度,持续时间和行程长度控制装置的商业标准形式该原本安装钢筋是由铝棒替换和进一步配备有应变仪(B)来衡量的切向力(F T)。 请点击此处查看该图的放大版本。

在里面<s仲>图2显示了完整的实验装置,其中该修改的Taber磨耗设备被放置在nanosecured工作后的整合之下。自由粒子空气不断这项工作门柱内侧在31000升/ min的流速循环。它有99.99%的粒子过滤效率和已经由Morgeneyer 等人 27在各个纳米颗粒“含尘测试成功地使用。

图2
图2.实验装置(Shandilya 31),一个nanosecured办公设施,开展产生的气溶胶粒子的磨损测试和实时特性(定性和quantitavive)。的自由粒子的空气的一小部分经过排放腔室内部的槽,以消除它的背景颗粒数浓度。PLOAD / 53496 / 53496fig2large.jpg“目标=”_空白“>点击此处查看该图的放大版本。

磨损设备的电机之外保持其线性滑动部分保持在一个自行设计的排放试验室中,具有尺寸0.5米×0.3米×0.6米,(在乐鼻邯 28详细信息)。它有助于在防止磨损装置'马达排放在测试结果的干扰。所产生的气溶胶粒子的采样是径向对称罩(713厘米3体积)的接近度内完成的。通过采用这样的罩,所述气雾颗粒的损失,由于其沉积在表面上可以被最小化。其他优点包括在气溶胶粒子数浓度的增加,由于发动机罩的相对于发射测试室中的相对较低的体积。由于这种设置,粒子气溶胶的实时表征和分析磨耗期间š如何产生可以通过实验在它们的数量浓度大小分布元素组成形状方面进行。根据Kulkarni 。5,ENM的个数浓度的气溶胶粒子可以被定义为“ENM存在于单位立方厘米空气的数量”。同样,ENM气雾剂的粒度分布“表达一种ENM属性(通常数量和质量浓度)与颗粒在给定的尺寸范围相关联的量的关系”。

粒子计数器(可测量尺寸范围:4纳米到3μm)测量气溶胶粒子数浓度(PNC)。颗粒大小测定器(可测量尺寸范围:15纳米- 20微米)测量粒度分布(PSD)。气雾剂粒子采样器(由R'mili 等人在详细地描述 <sup> 30)用于颗粒收集通过过滤技术在多孔铜网格,可以稍后在透射电子显微镜(TEM),用于释放颗粒的各种定性分析使用。

(二)对环境的请求可以通过在一个风化室加速人工老化, 如图3所示来进行模拟。如由Shandilya 等人 31,风化条件可以保持在符合国际标准或根据被定制类型模拟。用光学辐射滤波器安装 – (400纳米300)的UV曝光是通过氙弧灯提供。雨水的作用是通过喷洒去离子和净化水到他们模拟。一个水库被放置在试验样品下方,以收集径流水。所收集的水或渗滤液可以稍后用于执行ENM浸出分析。

<imgALT =“图3”SRC =“/文件/ ftp_upload / 53496 / 53496fig3.jpg”/>
图3. 耐候试验箱。SUNTEST的XLS +耐候试验箱的商业形态包含一个不锈钢罩内该纳米涂层样本被放置。该水库被放置这是罩内被喷了水的源头引擎盖下方。 请点击此处查看该图的放大版本。

Protocol

注:此处的协议中提出的技术并不只限于所呈现的测试样品,但可以用于其它样品为好。 1.人工老化[CEREGE平台,普罗旺斯地区艾克斯] 取去离子和净化水的250毫升样品在烧杯中喷洒。浸泡水电导率仪的尖端插入水中。注意水的电导率。重复这一过程,每次注意水的电导率。 注:根据ISO 16474 32,它永远也不应该超过5μS/ cm的高。 测量的电导率之后,水源连接?…

Representative Results

试验样品 在文章中提出的方案分别适用于三种不同的商业纳米产品。聚焦在这里摆上了实验方法的详细信息: (一)的铝硅酸盐砖的 TiO 2纳米颗粒增强的,(11厘米×5厘米×2厘米)。发现在构建外墙,房屋的墙壁,墙砖,人行道等的频繁的应用及其用扫描电子显微镜的图像一起材料性能示于表1和图4?…

Discussion

在本文章中,纳米安全 – 通过设计的商用产品纳米结构的实验研究,提出。所述纳米安全逐设计的任何产品都可以在其PNC和PSD而言,当它受到机械应力和环境风化进行研究。该项研究选择了该产品是铝硅酸盐砖纳米TiO 2钢筋,釉用纳米颗粒和光催化纳米涂层与纳米TiO 2。这些产品在商业市场上很容易接触到客户,并与他们的日常生活以及相关。因此,他们对他们的纳米安…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was carried out in the framework of the Labex SERENADE (ANR-11-LABX-0064) and the A*MIDEX Project (ANR-11-IDEX-0001-02), funded by the French Government program, Investissements d’Avenir, and managed by the French National Research Agency (ANR). We thank the French Ministry of Environment (DRC 33 and Program 190) and ANSES (Nanodata Project 2012/2/154, APR ANSES 2012) for financing the work. We are equally grateful to Olivier Aguerre-Chariol, Patrice Delalain, Morgane Dalle, Laurent Meunier, Pauline Molina, and Farid Ait-Ben-Ahmad for their cooperation and advice during the experiments.

Materials

Photocal Masonry Nanofrance Technologies Test sample
Masonry brick (ref. 901796) Castorama Support for test sample
Optical microscope (model Imager.M1m) Carl Zeiss
MicroImaging GmbH
For microcopic analysis
Energy-dispersion spectroscope (model X-max) Oxford Instruments For elemental composition analysis
Transmission Electron
Microscope (model CM12)
Philips For microcopic analysis
Weathering chamber (model Suntest XLS+) Atlas For accelerated artificial weathering
Xenon arc lamp (model NXE 1700) Ametek SAS UV rays source
Inductively Coupled Plasma Mass spectrometer (model 7500cx) Agilent Technologies For leachate
water samples analysis
Taber linear abraser (model 5750) Taber Inc. For abrasion
Taber H38 abradant Taber Inc. For abrasion
Condensation Particle Counter 3775 TSI For counting number concentration of aerosol particles
Aerodynamic Particle Sizer 3321 TSI For measuring the size of aerosol particles 
Differential Mobility Analyzer 3081 TSI For measuring the size of aerosol particles 
Mini Particle Sampler Ecomesure For sampling the aerosol particles
Gilian LFS-113 Low Flow Personal Air Sampling Pump Sensidyne For sampling the aerosol particles

References

  1. Potocnick, J. . European Commission Recommendation on the definition of nanomaterial (2011/696/EU). , (2011).
  2. Oberdorster, G., Oberdorster, E., Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp. 113 (7), 823-839 (2005).
  3. Le Bihan, O., Shandilya, N., Gheerardyn, L., Guillon, O., Dore, E., Morgeneyer, M. Investigation of the Release of Particles from a Nanocoated Product. Adv Nanoparticles. 2 (1), 39-44 (2013).
  4. Houdy, P., Lahmani, M., Marano, F. . Nanoethics and Nanotoxicology. , (2011).
  5. Kulkarni, P., Baron, P. A., Willeke, K. . Aerosol Measurement: Principle, Techniques and Applications. , (2011).
  6. Hsu, L. Y., Chein, H. M. Evaluation of nanoparticle emission for TiO2 nanopowder coating materials. J Nanopart Res. 9 (1), 157-163 (2007).
  7. Maynard, A. D. Safe handling of nanotechnology. Nature. 444 (1), 267-269 (2006).
  8. Shatkin, J. A., et al. Nano risk analysis: advancing the science for nanomaterials risk management. Risk Anal. 30 (11), 1680-1687 (2011).
  9. Göhler, D., Nogowski, A., Fiala, P., Stintz, M. Nanoparticle release from nanocomposites due to mechanical treatment at two stages of the life-cycle. Phys Conf Ser. 429, 012045 (2013).
  10. Allen, N. S., et al. Ageing and stabilisation of filled polymers: an overview. Polym Degrad Stabil. 61 (2), 183-199 (2004).
  11. Allen, N. S., et al. Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles. Polym Degrad Stabil. 85 (3), 927-946 (2004).
  12. Al-Kattan, A., et al. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. J Environ Monitor. 15 (12), 2186-2193 (2013).
  13. Kaegi, R., et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut. 156 (2), 233-239 (2008).
  14. Hirth, S., Cena, L., Cox, G., Tomovic, Z., Peters, T., Wohlleben, W. Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanopart Res. 15 (2), 1504-1518 (2013).
  15. Shandilya, N., Le Bihan, O., Morgeneyer, M. A review on the study of the generation of (nano-) particles aerosols during the mechanical solicitation of materials. J Nanomater. 2014, 289108 (2014).
  16. Wohlleben, W., et al. On the lifecycle of nanocomposites: comparing released fragments and their in vivo hazards from three release mechanisms and four nanocomposites. Small. 7 (16), 2384-2395 (2011).
  17. Bouillard, J. X., et al. Nanosafety by design: risks from nanocomposite/nano waste combustion. J Nanopart Res. 15 (1), 1519-1529 (2013).
  18. Ounoughene, G., et al. Behavior and fate of Halloysite Nanotubes (HNTs) when incinerating PA6/HNTs nanocomposite. Environ Sci Technol. 49 (9), 5450-5457 (2015).
  19. Morose, G. The 5 principles of "Design for Safer Nanotechnology&#34. J Clean Prod. 18 (3), 285-289 (2010).
  20. ASTM International. . ASTM D4060: Standard test method for the abrasion of organic coatings by the Taber abradant. , (2007).
  21. ASTM International. . ASTM D6037: Standard test methods for dry abrasion mar resistance of high gloss coatings. , (1996).
  22. ASTM International. . ASTM D1044: Standard test method for resistance of transparent plastics to surface abrasion. , (2008).
  23. Golanski, L., Guiot, A., Pras, M., Malarde, M., Tardif, F. Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct). J Nanopart Res. 14 (1), 962-970 (2012).
  24. Vorbau, M., Hillemann, L., Stintz, M. Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings. J Aerosol Sci. 40 (3), 209-217 (2009).
  25. Hassan, M. M., Dylla, H., Mohammad, L. N., Rupnow, T. Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr Build Mater. 24 (8), 1456-1461 (2010).
  26. Morgeneyer, M., Shandilya, N., Chen, Y. M., Le Bihan, O. Use of a modified Taber abrasion apparatus for investigating the complete stress state during abrasion and in-process wear particle aerosol generation. Chem Eng Res Des. 93 (1), 251-256 (2015).
  27. Morgeneyer, M., Le Bihan, O., Ustache, A., Aguerre Chariol, O. Experimental study of the aerosolization of fine alumina particles from bulk by a vortex shaker. Powder Technol. 246 (1), 583-589 (2013).
  28. Le Bihan, O., Morgeneyer, M., Shandilya, N., Aguerre Chariol, O., Bressot, C., Vogel, U., Savolainen, K., Wu, Q., Van Tongeren, M., Brouwer, D., Berges, M. Chapter 7. Handbook of Nanosafety: Measurement, Exposure and Toxicology. , (2014).
  29. Göhler, D., Stintz, M., Hillemann, L., Vorbau, M. Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann Occup Hyg. 54 (6), 615-624 (2010).
  30. R’mili, B., Le Bihan, O., Dutouquet, C., Aguerre Charriol, O., Frejafon, E. Sampling by TEM grid filtration. Aerosol Sci Tech. 47 (7), 767-775 (2013).
  31. Shandilya, N., Le Bihan, O., Bressot, C., Morgeneyer, M. Emission of Titanium Dioxide Nanoparticles from Building Materials to the Environment by Wear and Weather. Environ Sci Technol. 49 (4), 2163-2170 (2015).
  32. AFNOR. . ISO 16474-1: Paints and varnishes − Methods of exposure to laboratory light sources − Part 1: General guidance. , (2012).
  33. Shandilya, N., Le Bihan, O., Bressot, C., Morgeneyer, M. Evaluation of the particle aerosolization from n-TiO2 photocatalytic nanocoatings under abrasion. J Nanomater. 2014, 185080 (2014).
  34. Shandilya, N., Le Bihan, O., Morgeneyer, M. Effect of the Normal Load on the release of aerosol wear particles during abrasion. Tribol Lett. 55 (2), 227-234 (2014).
  35. White, L. R. Capillary rise in powders. J Colloid Interf Sci. 90 (2), 536-538 (1982).
  36. Dufresne, E. R., et al. Flow and fracture in drying nanoparticle suspensions. Phys Rev Lett. 91, 224501 (2003).
  37. Hare, C. H. The degradation of coatings by ultraviolet light and electromagnetic radiation. JPCL. , (1992).
  38. Tirumkudulu, M. S., Russel, W. B. Cracking in drying latex films. Langmuir. 21 (11), 4938-4948 (2005).
  39. Shandilya, N., Morgeneyer, M., Le Bihan, O. First development to model aerosol emission from solid surfaces subjected to mechanical stresses: I. Development and results. J Aerosol Sci. 89, 43-57 (2015).
  40. Shandilya, N., Morgeneyer, M., Le Bihan, O. First development to model aerosol emission from solid surfaces subjected to mechanical stresses: II. Experiment-Theory comparison, simulation and sensibility analysis. J Aerosol Sci. 89, 1-17 (2015).
  41. Bressot, C., et al. Environmental release of engineered nanomaterials from commercial tiles under standardized abrasion conditions. J Hazardous Materials. , (2016).

Play Video

Citer Cet Article
Shandilya, N., Le Bihan, O. L., Bressot, C., Morgeneyer, M. Experimental Protocol to Investigate Particle Aerosolization of a Product Under Abrasion and Under Environmental Weathering. J. Vis. Exp. (115), e53496, doi:10.3791/53496 (2016).

View Video