The identification of molecules associated with specific genomic regions of interest is required to understand the mechanisms of regulation of the functions of these regions. This protocol describes procedures to perform engineered DNA-binding molecule-mediated chromatin imunoprecipitation (enChIP) for identification of proteins and RNAs associated with a specific genomic region.
The identification of molecules associated with specific genomic regions of interest is required to understand the mechanisms of regulation of the functions of these regions. To enable the non-biased identification of molecules interacting with a specific genomic region of interest, we recently developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technique. Here, we describe how to use enChIP to isolate specific genomic regions and identify the associated proteins and RNAs. First, a genomic region of interest is tagged with a transcription activator-like (TAL) protein or a clustered regularly interspaced short palindromic repeats (CRISPR) complex consisting of a catalytically inactive form of Cas9 and a guide RNA. Subsequently, the chromatin is crosslinked and fragmented by sonication. The tagged locus is then immunoprecipitated and the crosslinking is reversed. Finally, the proteins or RNAs that are associated with the isolated chromatin are subjected to mass spectrometric or RNA sequencing analyses, respectively. This approach allows the successful identification of proteins and RNAs associated with a genomic region of interest.
관심의 특정 게놈 영역과 관련된 분자의 동정은 이러한 전사 및 후생 유전 학적 조절 게놈 기능 조절 메커니즘을 이해하기 위해 필요하다. 여러 기술들이 특정 게놈 영역 1-7의 생화학 적 분석을 위해 개발되었지만, 이들은 때문에 이러한 제한된 애플리케이션 (예에만 반복으로 높은 카피 수 궤적 또는 유전자좌에 대한)과 같은 그들의 본질적인 문제로,이 단계에서 널리 사용되지 너무 많은 시간과 노력이 필요합니다.
쉽게 특정 게놈 영역의 생화학 적 분석을 수행하기 위해, 우리는 14-17 개의 궤적 특정 염색질 면역 (칩) 기술, 즉 삽입 성 온칩 (iChIP) 8-13 및 설계 DNA 결합 분자 매개 칩 (enChIP)을 개발했다 . iChIP에서 관심의 궤적이 같은 렉스와 같은 외래 DNA 결합 단백질의 삽입 인식 서열에 의해 태그가A. 궤적은 다음 태그 DNA 결합 단백질을 이용하여 친 화성 정제에 의해 격리됩니다. enChIP에서, 아연 손가락 단백질, 전사 활성제와 같은 (TAL) 단백질과 같은 DNA 결합 분자를 설계하고, 클러스터 정기적으로 interspaced 짧은 회문 반복 (CRISPR) 단지는 (그림 1) 관심의 궤적을 태그하는 데 사용됩니다. 그 후, 게놈 영역은 태그 DNA 결합 분자의 친 화성 정제에 의해 격리됩니다.
iChIP 위에 enChIP의 장점 중 하나는 외래 DNA 결합 단백질의 인식 서열의 삽입이 필요하지 않다는 것이다. Cas9 (dCas9)의 촉매 비활성 형태로 구성된 CRISPR 건물 및 가이드 RNA (gRNA)를 사용하여 궤적의 타겟팅 TAL 아연 손가락 단백질을 사용하여 iChIP 또는 enChIP에 의해이 지역의 대상보다 훨씬 쉽다. 여기서, 우리는 질량 분석 및 RNA 서열과 결합 enChIP 단계별 프로토콜을 서술 (RNA-SEQ)는 궤적-소시아를 식별테드 단백질과 RNA를 각각.
Here, we describe the purification of specific genomic regions using engineered DNA-binding molecules such as the CRISPR system and TAL proteins, and the identification of proteins and RNAs bound to these genomic regions. Binding of engineered DNA-binding molecules to the genome may affect chromatin structure, including nucleosome positioning, and may abrogate genomic functions, as described in CRISPR interference experiments21. To avoid these potential aberrant effects, we propose specific guidelines for choosing target genomic regions. First, to avoid potential inhibition of the recruitment of RNA polymerases and transcription factors, as well as disruption of nucleosome positioning around the transcription start site, the target regions for analyses of promoter regions should be several hundred base pairs upstream of (5′ to) the transcription start site. By contrast, when analyzing genomic regions with distinct boundaries, such as enhancers and silencers, genomic regions that are directly juxtaposed to these regions can be targeted because it is less likely that the binding of engineered DNA-binding molecules will affect their functions. Furthermore, it is best to avoid using target regions that are conserved among different species, because important DNA-binding molecules often bind to evolutionarily conserved regions and inhibition of their binding might disrupt the functions of the target genomic regions. In this regard, it is always necessary to check that the function of the target genomic region is maintained in the established cells used for enChIP analyses. Because multiple gRNAs can be tested easily and it is tedious and expensive to generate multiple versions of TAL or zinc-finger proteins recognizing different target genomic regions, enChIP using CRISPR is more advantageous than enChIP using other proteins.
It has been shown that dCas9 binds to off-target sites although affinity to those sites might be weaker than that to the target sites22-25. There are several ways to manage contamination of molecules bound to those off-target sites. First, the use of several, at least two, different gRNAs would be recommended. Those molecules commonly observed in enChIP using distinct gRNAs would be true positives. Second, comparison of different conditions for enChIP would be effective in cancelling contamination of non-specific molecules and molecules bound to off-target sites. Examples of those comparison sets would be (i) stimulation (-) and (+), or (ii) different cell types such as T cells vs. B cells. Finally, quantitative analysis of binding of candidate molecules should be performed to confirm their specific binding to the target sites. It is preferable to prepare cells expressing only dCas9 but not gRNA as a negative control.
Using enChIP analyses, we were able to successfully identify a number of known and novel molecules interacting with specific genomic regions (Tables 1-3)14-17. However, this technique failed to detect some other known proteins interacting with these regions. For example, STAT1 reportedly associates with the IRF-1 promoter upon IFNγ stimulation8, but our enChIP-SILAC analysis did not detect STAT1 as a protein induced to interact with this genomic region16. In addition, in the enChIP-MS analysis of telomeres, we did not detect shelterin proteins consisting of TRF-1 and TRF-215, which have been shown to interact with telomeres26. There are a few potential reasons for these discrepancies. First, the stoichiometry of binding of Stat1 to the IRF-1 promoter might be very low. It is reasonable that enChIP-MS, including enChIP-SILAC, detects proteins that are more abundantly associated with target genomic regions; hence, the analysis of more cells might be necessary to detect these proteins. Increases in the sensitivities of MS instruments would also contribute to the efficient detection of proteins with low stoichiometric binding. Second, some proteins, possibly including Stat1 and shelterins, might be difficult targets for MS analyses. Third, in our analysis of telomere-binding proteins15, the 3×FLAG-TAL proteins recognizing telomeres (3×FN-Tel-TAL) might have blocked the binding of shelterins to telomeres in a competitive fashion.
In contrast to the relative difficulty of detecting transcription factors binding to specific genomic regions using enChIP, we successfully identified epigenetic regulators such as histone modification enzymes using enChIP analyses. The success of this technique may be due to the fact that epigenetic regulators bind to a broad range of genomic regions; hence, more proteins per genomic region are available for MS. Because epigenetic regulators are increasingly recognized as important targets for drugs against intractable diseases such as cancer, enChIP would be a useful tool for the identification of epigenetic drug targets.
The authors have nothing to disclose.
이 작품은 다케다 과학 재단 (TF)에 의해 지원되었다; 아사히 글라스 재단; 우에하라 기념 재단 (HF); 쿠라타 기념 히타치 과학 기술 재단 (TF 및 HF); 부여 – 에이드의 젊은 과학자를위한 (B) (# 25830131), 그랜트 – 에이드의 과학 연구 (C) (# 15K06895) (TF)에 대한; 및 보조금 에이드의 혁신 분야 '전사주기'에 대한 과학 연구를위한 (# 25118512 & # 15H01354), 그랜트 – 에이드의 과학 연구 (B) (# 15H04329)에 대한 그랜트 – 에이드의 탐색 적 연구 ( # 26650059)과 일본의 교육부, 문화, 스포츠, 과학 기술에서 '게놈 지원'(# 221S0002) (HF).
gBlock synthesis service | Life Technologies | Gene Synthesis by GeneArt | |
gBlock synthesis service | IDT (Integrated DNA Technologies) | gBlocks Gene Fragments | |
pSIR-neo | Addgene | 51128 | |
pSIR-GFP | Addgene | 51134 | |
pSIR-DsRed-Express2 | Addgene | 51135 | |
pSIR-hCD2 | Addgene | 51143 | |
TAL synthesis service | Life Technologies | GeneArt Precision TALs | |
3xFLAG-dCas9/pCMV-7.1 | Addgene | 47948 | |
3×FLAG-dCas9/pMXs-puro | Addgene | 51240 | |
3×FLAG-dCas9/pMXs-IG | Addgene | 51258 | |
3×FLAG-dCas9/pMXs-I2 | Addgene | 51259 | |
3×FLAG-dCas9/pMXs-neo | Addgene | 51260 | |
anti-FLAG M2 Ab | Sigma-Aldrich | F1804 | |
FITC-conjugated anti-FLAG M2 | Sigma-Aldrich | F4049 | |
DMEM medium for SILAC | Life Technologies | 89985 | Other medium can be purchased from Life Technologies |
Dialyzed FBS for SILAC | Life Technologies | 89986 | |
L-Lysine-2HCl for SILAC | Life Technologies | 89987 | for Light medium |
L-Arginine-HCl for SILAC | Life Technologies | 89989 | for Light medium |
L-Lysine-2HCl, 13C6 for SILAC | Life Technologies | 89988 | For Heavy medium |
L-Arginine-HCl, 13C6, 15N4 for SILAC | Life Technologies | 89990 | For Heavy medium |
Complete, mini, EDTA-free | Roche Diagnostics | 4693159 | |
Ultrasonic Disruptor UD-201 | Tomy Seiko | ||
ChIP DNA Clean & Concentrator | Zymo Research | D5205 | |
Dynabeads-Protein G | Life Technologies | DB10004 | |
RNasin Plus RNase Inhibitor | Promega | N2611 | |
Isogen II | Nippon Gene | 311-07361 | |
Direct-zol RNA Miniprep kit | Zymo Research | R2050 | |
LTQ Orbitrap Velos | Thermo Fisher Scientific | a component of a nanoLC-MS/MS system for MS analysis | |
nanoLC | Advance, Michrom Bioresources | a component of a nanoLC-MS/MS system for MS analysis | |
HTC-PAL autosampler | CTC Analytics | a component of a nanoLC-MS/MS system for MS analysis |