It is critical in neurobiology and neurovirology to have a reliable, replicable in vitro system that serves as a translational model for what occurs in vivo in human neurons. This protocol describes how to culture and differentiate SH-SY5Y human neuroblastoma cells into viable neurons for use in in vitro applications.
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease.
The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.
Die Fähigkeit, in vitro Modellsysteme zu verwenden, hat sich stark verbessert den Bereichen Neurobiologie und Neurowissenschaften. Zellen in Kultur bieten eine effiziente Plattform Proteinfunktionalität und molekularen Mechanismen der spezifischen Phänomene zu verstehen, die Pathologie der Krankheit und Infektion zu charakterisieren, und die vorläufigen Testarzneimittelprüfungen durchzuführen. In der Neurobiologie umfassen die wichtigsten Arten von Zellkulturmodellen abgeleitet primären neuronalen Kulturen von Ratten und Mäusen, und Neuroblastom-Zelllinien, wie Ratte B35-Zellen 5, Neuro-2A Mauszellen 6 und Ratten-PC12-Zellen 7. Obwohl die Verwendung solcher Zelllinien signifikant die Feld fortgeschritten ist, gibt es mehrere Störfaktoren, die mit Umgang mit nicht-menschlichen Zellen und Gewebe. Dazu gehören Verständnis speziesspezifische Unterschiede in Stoffwechselprozessen, Phänotypen von Krankheitsmanifestation und Pathogenese bei Anwendung im Menschen verglichen. Es ist auch wichtig zu beachten, dass dieRe gibt erhebliche Unterschiede zwischen Maus und Mensch Genexpression und Transkriptionsfaktor-Signalisierung, Hervorhebung der Einschränkungen von Tiermodellen und die Bedeutung des Verstehens, die Wege zwischen Nagern und Menschen 11.08 konserviert sind. Andere haben die Verwendung von humanen neuronalen Zelllinien, einschließlich der N-Tera-2 (NT2) menschlichen Teratokarzinom Zelllinie und induzierbare pluripotente Stammzellen (iPS) eingesetzt. Diese Zelllinien sorgen für gute Modelle für die in vitro menschliche Systeme. Jedoch Differenzierung von NT2-Zellen mit Retinsäure (RA) führt zur Erzeugung eines gemischten Population von Neuronen, Astrozyten und radialer Gliazellen 12, einen zusätzlichen Reinigungsschritt notwendig, um reine Populationen von Neuronen erhalten. Zusätzlich zeigen NT2 Zellen eine sehr variable Karyotyp 13, wobei mehr als 60-Chromosomen in 72% der Zellen. iPS-Zellen zeigen Variabilität bei der Differenzierung zwischen verschiedenen Zelllinien und variieren in der Differenzierung Effizienz 14. Es ist daher wünschenswert, eine konsistente und reproduzierbare humanen neuronalen Zellmodell zu haben diese Alternativen ergänzen.
SH-SY5Y Neuroblasten-ähnlichen Zellen sind ein Subklon des Eltern Neuroblastom-Zelllinie SK-N-SH. Die Elternzelllinie wurde im Jahr 1970 von einer Knochenmarkbiopsie erzeugt, die 15 beide Neuroblast artig und Epithel-ähnlichen Zellen enthält. SH-SY5Y-Zellen haben einen stabilen Karyotyp, bestehend aus 47-Chromosomen, und kann von einer Neuroblasten artigen Zustand zu reifen menschlichen Nervenzellen durch eine Vielzahl verschiedener Mechanismen, einschließlich der Verwendung von RA, Phorbolester, und spezifische Neurotrophine wie Gehirn stamm unterscheiden neurotrophic factor (BDNF). Vor deutet darauf hin, dass die Verwendung verschiedener Methoden zur spezifischen Neuronen Subtypen wie adrenergen auswählen, cholinergen und dopaminergen Neuronen 16,17. Dieser letztere Aspekt macht SH-SY5Y-Zellen, die für eine Vielzahl von neurobiologischen Experimenten.
ontent "> Mehrere Studien haben wichtige Unterschiede zwischen SH-SY5Y-Zellen in ihrem undifferenzierten und differenzierten Zuständen festgestellt. Wenn SH-SY5Y-Zellen sind undifferenziert, sie vermehren sich und treten schnell unpolarisierten zu sein, mit sehr wenigen, kurzen Prozessen. Sie wachsen häufig in Klumpen und express Marker indikativ für unreife Neuronen 18,19. Wenn differenziert, erstrecken sich diese Zellen lang, verzweigt Prozesse, Verminderung der Zellproliferation, und in einigen Fällen polarisieren 2,18. ausdifferenzierten SH-SY5Y-Zellen zuvor gezeigt wurde, ein auszudrücken Vielzahl von verschiedenen Markern von reifen Nervenzellen, einschließlich des Wachstums-assoziierten Protein (GAP-43), neuronale Zellkerne (NeuN), Synaptophysin (SYN), synaptischen Vesikel Protein II (SV2), Neuron spezifische Enolase (NSE) und Mikrotubuli-assoziierten Protein (MAP) 2,16,17,20 und 4 die Expression von glial Marker wie glial fibrillary acidic protein (GFAP) fehlt. In weiteren Unterstützung, die SH-SY5Y-Zellen differenziert represent eine homogene neuronalen Population, die Entfernung von BDNF führt zu zellulären Apoptose 4. Dies deutet darauf hin, dass das Überleben von differenzierten SH-SY5Y-Zellen auf trophischen Faktoren abhängig ist, ähnlich Neuronen zu reifen.Verwendung von SH-SY5Y-Zellen erhöht ist, seit der Subklon 1978 3 hergestellt wurde. Einige Beispiele für deren Verwendung umfassen Untersuchung Parkinson-Krankheit 17, Alzheimer-Krankheit 21 und die Pathogenese von viralen Infektionen einschließlich Poliovirus 22, Enterovirus 71 (EV71) 23,24 , Varicella-Zoster-Virus (VZV) 1, humanen Cytomegalovirus 25 und Herpes simplex-Virus (HSV) 2,26. Es ist wichtig, dass mehrere Studien unter Verwendung von SH-SY5Y-Zellen, diese Zellen in ihrem undifferenzierten Form verwendet zu beachten, vor allem im Bereich der neurovirology 27-36. Der Unterschied in der beobachteten Phänotyp von undifferenzierten gegenüber differenzierten SH-SY5Y-Zellen wirft die Frage auf whether die beobachtete Fortschreiten der Infektion würde in reifen differenzierten Neuronen unterschiedlich sein. Beispielsweise unterscheiden SH-SY5Y-Zellen haben einen höheren Wirkungsgrad von HSV-1 Aufnahme gegen die undifferenzierten, SH-SY5Y-Zellen vermehren, was zu einem Mangel an Oberflächenrezeptoren zurückzuführen sein kann, die HSV binden und modulieren Eintrag der undifferenzierten SH-SY5Y-Zellen 2. Es ist daher wichtig, dass, wenn ein Experiment zum Testen Neuronen in vitro fokussiert Gestaltung, SH-SY5Y-Zellen, um differenziert werden die genauesten Ergebnisse für die Übersetzung und Vergleich zu in vivo-Modelle zu erhalten.
Die Entwicklung einer zuverlässigen Methode humanen neuronalen Kulturen zu erzeugen ist zwingend notwendig Forscher zu ermöglichen Translationsexperimente durchzuführen, die genau den menschlichen Nervensystems modellieren. Das Protokoll hier vorgestellten ist ein Verfahren, das beste Verfahren der vorangegangenen Methoden 4.1 zu bereichern für den menschlichen Neuronen abgrenzt, die differenziert werdenVerwendung von Retinsäure.
Das obige Protokoll bietet eine einfache und reproduzierbare Methode homogene und lebensfähigen humanen neuronalen Kulturen zu erzeugen. Dieses Protokoll nutzt Techniken und Praktiken, die mehrere zuvor veröffentlichten Methoden 4.1 und Ziele integrieren, um die besten Praktiken der einzelnen zu beschreiben. Differenzierung von SH-SY5Y-Zellen beruht auf allmähliche Serumentzug; die Zugabe von Retinsäure, neurotrophen Faktoren und extrazellulären Matrixproteinen; und Serien Spaltung für differenzierte re…
The authors have nothing to disclose.
We are grateful for the contributions of Yolanda Tafuri in optimizing conditions for SH-SY5Y differentiation, and for the support of Dr. Lynn Enquist, in whose lab this work was initiated. Y. Tafuri contributed the images shown in Figure 3. This work was supported by the NIH-NIAID Virus Pathogens Resource (ViPR) Bioinformatics Resource Center (MLS and L. Enquist) and K22 AI095384 (MLS).
B-27 | Invitrogen | 17504-044 | See Table 1 for preparation |
Brain-Derived Neurotrophic Factor (BDNF) | Sigma | SRP3014 (10ug)/B3795 (5ug) | See Table 1 for preparation |
dibutyryl cyclic AMP (db-cAMP) | Sigma | D0627 | See Table 1 for preparation |
DMSO | ATCC | 4-X | – |
Minimum Essential Medium Eagle (EMEM) | Sigma | M5650 | – |
Fetal Bovine Serum (FBS) | Hyclone | SH30071.03 | See Table 1 for preparation |
GlutamaxI | Life Technologies | 35050-061 | – |
Glutamine | Hyclone | SH30034.01 | – |
Potassium Chloride (KCl) | Fisher Scientific | BP366-1 | See Table 1 for preparation |
MaxGel Extracellular Matrix (ECM) solution | Sigma | E0282 | See step 11 of the protocol |
Neurobasal | Life Technologies | 21103-049 | – |
Penicillin/Streptomycin (Pen/Strep) | Life Technologies | 15140-122 | – |
Retinoic acid (RA) | Sigma | R2625 | Should be stored in the dark at 4° C because this reagent is light sensitive |
SH-SY5Y Cells | ATCC | CRL-2266 | – |
0.5% Trypsin + EDTA | Life Technologies | 15400-054 | – |
Falcon 35mm TC dishes | Falcon (A Corning Brand) | 353001 | – |