Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and molecular techniques (16S rRNA gene sequencing) permit the identification of rare bacterial pathogens in routine diagnostics. The goal of this protocol lies in the combination of both techniques which leads to more accurate and reliable data.
Es gibt eine Reihe von seltenen und daher unzureichend bakterielle Pathogene beschrieben, die schwere Infektionen berichtet werden insbesondere bei immunsupprimierten Patienten zu verursachen. In den meisten Fällen nur wenige Daten, meist als Fallberichte veröffentlicht, zur Verfügung, die die Rolle solcher Krankheitserreger wie ein infektiöses Agens untersuchen. Daher wird, um die pathogene Charakter solcher Mikroorganismen zu klären, ist es notwendig, epidemiologische Studien durchzuführen, die eine große Anzahl dieser Bakterien umfassen. Die verwendeten Methoden in einer solchen Überwachung Studie haben die folgenden Kriterien erfüllen: die Identifizierung der Stämme hat genau zu sein nach der gültigen Nomenklatur, sollten sie leicht sein (Robustheit), sparsam in der Routinediagnostik zu handhaben, und sie haben zu erzeugen, vergleichbar Ergebnisse unter verschiedenen Labors. Im Allgemeinen gibt es drei Strategien für die Bakterienstämme in einer Routineeinstellung identifiziert: 1) phänotypische Identifizierung der BioChemica charakterisierendenl und metabolischen Eigenschaften der Bakterien, 2) Molekulartechniken wie 16S rRNA-Gen-Sequenzierung und 3) Massenspektrometrie als neuartige Proteom basierten Ansatz. Da Massenspektrometrie und molekularen Ansätzen die vielversprechendsten Mittel zur Identifizierung einer Vielzahl von Bakterienarten sind, sind diese beiden Methoden beschrieben. Die Fortschritte, Grenzen und mögliche Probleme bei der Anwendung dieser Techniken werden diskutiert.
Sichere Identifizierung von seltenen Krankheitserregern in der Routinediagnostik wird durch die Tatsache erschwert, dass die klassische kulturelle und biochemische Methoden sind umständlich und manchmal fragwürdig. Darüber hinaus hat ein diagnostisches mikrobiologischen Labor eine große Anzahl von Krankheitserregern zu verarbeiten, von ein paar hundert bis zu mehreren tausend hin, täglich, die die Verwendung von automatisierten Systemen erfordert. Zusätzlich zu der Verwaltung eines hohen Tagesdurchsatz, die genaue Identifizierung von Bakterienspezies erforderlich. Dies ist gerechtfertigt , da sie in ihrer antimikrobiellen Empfindlichkeitsmuster unterscheiden und damit die korrekte Identifizierung liefert dem Arzt wichtige Informationen geeigneten Antibiotika zu wählen (zB Enterococcus spp., Acinetobacter spp.) 12,43.
Automatisierte mikrobiellen Identifizierungssysteme (AMIS) gelten standardisierte Sätze von enzymatischen Reaktionen, die metabolischen Eigenschaften von bakteriellen Isolate zu charakterisieren <sup> 13,15,16,26,27. Obwohl die in diesen Systemen verwendeten Patronen verwenden , um eine große Anzahl von verschiedenen biochemischen Reaktionen, zum Beispiel 47 in der GN – Karte der AMIS in dieser Studie verwendeten 52, diese Strategie erlaubt eine sichere Identifikation nur für eine begrenzte Anzahl von Bakterien. Weiterhin wird die Datenbank, ein fortschrittliches Expertensystem fokussiert klar auf der Erfassung der relevanten und hoch relevanten Bakterien von medizinischer Bedeutung 13,15,16,36. Zwei weitere Systeme, die weithin in Laboratorien verwendet werden, gelten auch für diese biochemische Ansatz zur Identifizierung von Bakterien. Jüngste Studien zeigen eine vergleichbare Identifikationsgenauigkeit zwischen den Amis in dieser Studie und einer der Wettbewerber verwendet (93,7% bzw. 93,0%), während die 3. AMIS eine Identifikationsgenauigkeit von nur 82,4% hat auf Art 35 nivellieren. Solche Abweichungen können von der Qualität der zugrunde liegenden Identifikationsdatenreferenzen, die Versionen von Kits und Software, Unterschiede in metabo erklärt werdenlism und Kenntnisse des technischen Personals 35,36.
Zwei automatisierte MALDI-TOF-MS-Systeme (MALDI-TOF mikrobiellen Identifizierungssystem, MMIS) werden hauptsächlich verwendet. Diese Systeme ermöglichen die Erfassung einer großen Anzahl von Bakterienspezies auf der Grundlage ihrer Protein Fingerabdruck-Massenspektren. Zum Beispiel verwendet die Datenbank des MMIs enthält 6,000 Referenzspektren. Identifikationssysteme basierend auf Massenspektrometrie bieten schnelle und zuverlässige Detektion einer Vielzahl von Mikroorganismen , einschließlich seltene Erreger 11,48,51. Bis heute sind nur wenige direkte Vergleiche zwischen den verfügbaren MMIS in dieser Studie und der Wettbewerber verwendet 19,33. Gemäß Daek et al. Beide Systeme bieten eine ähnlich hohe Rate der Identifikationsgenauigkeit, aber die in dieser Studie verwendet MMIs scheint in Speziesidentifizierung 19 zuverlässiger zu sein.
In ähnlicher Weise Adressieren molekulare Techniken gut konserviert, sondern auch verschiedene Gene ( <em> zB 16S rDNA oder rpoB) ermöglichen eine eindeutige Identifizierung von Arten 3,22,61. Unter diesen ist die 16S – rDNA der am häufigsten verwendete Housekeeping – Gen wegen seiner Präsenz in allen 34 Bakterien. Seine Funktion unverändert bleibt und schließlich mit etwa 1500 bp, das lang genug ist , für Bio-Informatik 14,34 eignen. Viele Forscher betrachten 16S rRNA – Gen – Analyse als "Gold-Standard" für die Identifizierung von Bakterien 21. Dies ist aufgrund der Tatsache , dass nur wenige Laboratorien DNA-DNA – Hybridisierungstechniken bisher zur Identifizierung von seltenen oder neue Bakterien 14,34 verwenden. Darüber hinaus werden immer mehr Datenbanken verfügbar , die für die 16S – rRNA – Gen – Analyse 50 verwendet werden kann. Sie hat jedoch berücksichtigt werden, dass 16S rDNA basierten Detektionssystemen haben eine begrenzte Empfindlichkeit gegenüber Standard-PCR-Protokolle. Darüber hinaus ist die molekulare Ansatz anspruchsvoll, zeitaufwendig und erfordert gut ausgebildetes Personal sowiegewidmet Laboreinrichtungen und ist daher nicht so leicht in die Routinediagnostik implementiert 55. Darüber hinaus hat es sich gezeigt, dass die Kombination von mindestens zwei verschiedenen Methoden der Bakterienidentifikation zur hochgenauen Dehnungs Identifizierung führt. Die Kombination von MALDI-TOF MS und 16S-rDNA-Sequenzierung erlaubt die Identifizierung einer großen Anzahl von verschiedenen Bakterienspezies mit hoher Genauigkeit. Vor kurzem hat die Kombination von MALDI-TOF – MS und 16S rRNA – Gen – Analyse wurde 56 zur Identifizierung von Bakterien studieren epidemiologische Fragestellungen und seltene Krankheitserreger vorgestellt.
Sowohl MALDI-TOF MS und 16S-rRNA-Gen-Sequenzierung bieten die Möglichkeit, eine große Anzahl von verschiedenen Bakterien zu identifizieren. MALDI-TOF-MS ist eine schnelle und kostengünstige Methode, die leicht zu handhaben und große Datenbanken von bakteriellen Massenspektren zur Verfügung. Aus diesem Grund ist MALDI-TOF MS eine schnelle, kostengünstige und zuverlässige Methode zum Screening Studien konzentrierten sich auf seltene bakterielle Pathogene 17,20,39,51 zuführen. In einer prospektiven Studi…
The authors have nothing to disclose.
The authors would like to thank Prof. Enno Jacobs for his continuing support.
CHROMASOLV, HPLC grade water, 1 L | Sigma-Aldrich Chemie, München, Germany | 270733 | |
Tissue Lyser LT | Qiagen, Hilden, Germany | 85600 | Oscillating Homogenizer |
Glass-beads 1,0mm | VWR International, Darmstadt, Germany | 412-2917 | |
Thermomixer 5436 | Eppendorf, Hamburg, Germany | 2050-100-05 | |
QIAamp DNA Mini Kit (250) | Qiagen, Hilden, Germany | 51306 | |
Taq PCR Core Kit (1000 U) | Qiagen, Hilden, Germany | 201225 | |
Forward Primer TPU1 (5´-AGA GTT TGA TCM TGG CTC AG-3’) | biomers.net GmbH, Ulm, Germany | – | |
Reverse Primer RTU4 (5´-TAC CAG GGT ATC TAA TCC TGT T-3´) | biomers.net GmbH, Ulm, Germany | – | |
Mastercycler | Eppendorf, Hamburg, Germany | - | Thermocylcer |
Reaction tube 1.5 mL | SARSTEDT, Nümbrecht, Germany | 72,692 | |
Reaction tube 2 mL | SARSTEDT, Nümbrecht, Germany | 72,693,005 | |
PCR 8er-CapStrips | Biozym Scientific, Hessisch Oldendorf, Germany | 711040X | |
PCR 8er-SoftStrips | Biozym Scientific, Hessisch Oldendorf, Germany | 711030X | |
Sharp R-ZV11 | Sharp Electronics, Hamburg, Germany | – | Microwave |
Titriplex III (EDTA Na2-salt dehydrate; 1 kg) | Merck, Darmstadt, Germany | 1084211000 | |
SeaKem LE Agarose | Biozym Scientific, Hessisch Oldendorf, Germany | 849006 | |
(2 x 500 g) | |||
SmartLadder SF – 100 to 1000 bp | Eurogentec, Lüttich, Belgium | MW-1800-04 | |
Bromphenol blue (25 g) | Sigma-Aldrich Chemie, München, Germany | B0126 | |
Xylene cyanol FF (10 g) | Sigma-Aldrich Chemie, München, Germany | X4126 | |
ComPhor L Maxi | Biozym, Hessisch Oldendorf, Germany | – | |
Ethidium bromide solution 1 %(10 mL) | Carl Roth, Karlsruhe, Germany | 2218.1 | |
Gel Doc 2000 | Bio-Rad Laboratories, München, Germany | – | Gel-documentation system |
ExoSAP-IT (500 reactions) | Affymetrix UK, Wooburn Green, High Wycombe, United Kingdom | 78201 | |
Buffer (10 x) with EDTA | Life Technologies, Darmstadt, Germany | 402824 | |
BigDye Terminator Kit v1.1 | Life Technologies, Darmstadt, Germany | 4337450 | |
Hi-Di formamide (25 mL) | Life Technologies, Darmstadt, Germany | 4311320 | |
DyeEx 2.0 Spin Kit (250) | Qiagen, Hilden, Germany | 63206 | |
3130 Genetic Analyzer | Life Technologies, Darmstadt, Germany | – | Sequenzer |
MicroAmp optical 96-well reaction plate with barcode | Life Technologies, Darmstadt, Germany | 4306737 | |
3130 Genetic Analyzer, plate base 96-well | Life Technologies, Darmstadt, Germany | 4317237 | |
3130 Genetic Analyzer, plate retainer 96-well | Life Technologies, Darmstadt, Germany | 4317241 | |
3130 Genetic Analyzer, well plate septa | Life Technologies, Darmstadt, Germany | 4315933 | |
3130 Genetic Analyzer, POP-7 Polymer, 7 mL | Life Technologies, Darmstadt, Germany | 4352759 | |
3130 Genetic Analyzer, 4-Capillary Array, 50 cm | Life Technologies, Darmstadt, Germany | 4333466 | |
Sequencing Analysis Software 5.4 | Life Technologies, Darmstadt, Germany | – | |
microflex (the MALDI TOF MS maschine) | Bruker Daltonik, Bremen, Germany | – | |
MALDI Biotyper (the MALDI TOF MS system) | Bruker Daltonik, Bremen, Germany | – | our mMIS |
VITEK MS | bioMérieux, Nürtingen, Germany | 2nd mMis | |
flexControl 3.4 (control software) | Bruker Daltonik, Bremen, Germany | – | |
Biotyper Realtime Classification 3.1 (RTC), (analysis software) | Bruker Daltonik, Bremen, Germany | – | |
α-cyano-4-hydroxycinnamic acid, HCCA, 1 g | Bruker Daltonik, Bremen, Germany | 201344 | |
Peptide Calibration Standard II | Bruker Daltonik, Bremen, Germany | 222570 | |
MSP 96 target polished steel | Bruker Daltonik, Bremen, Germany | 8224989 | |
peqgreen | peqlab | 37-5010 | |
MALDI Biotyper Galaxy | Bruker Daltonik, Bremen, Germany | Part No. 1836007 | |
Vitek 2 | bioMérieux, Nürtingen, Germany | our aMis | |
MicroScan | Beckman Coulter | 2nd aMis | |
BD Phoenix™ Automated Microbiology System | BD | 3rd aMis | |
Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™) | ATCC | postive control for PCR |