Cartilage repair represents an unmet medical challenge and cell-based approaches to engineer human articular cartilage are a promising solution. Here, we describe three-dimensional (3D) biomimetic hydrogels as an ideal tool for the expansion and maturation of human articular chondrocytes.
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development.
With its limited self-repair potential, human articular cartilage undergoes frequent irreversible damages. Extensive efforts are currently focused on the development of efficient cell-based approaches for treatment of articular cartilage injuries. The success of these cell-based therapies is highly dependent on the selection of an optimal cell source and the maintenance of its regenerative potential. Chondrocytes are a common cell source for cartilage repair, but they are limited in supply and can de-differentiate during in vitro expansion in 2D monolayer culture thereby limiting their generation of hyaline cartilage 1.
The aim of this protocol is to establish a 3-dimensional hydrogel platform for an in vitro comparative study of human chondrocytes from different ages and disease state. Unlike conventional two-dimensional (2D) culture, three-dimensional (3D) hydrogels allow chondrocytes to maintain their morphology and phenotype and provides a physiologically relevant environment enabling chondrocytes to produce cartilage tissue 2,3. In addition to providing a 3D physical structure for chondrocyte culture, hydrogels mimic the function of native cartilage extracellular matrix (ECM). Specifically, the inclusion of chondroitin sulfate methacrylate provides a potential reservoir for secreted paracrine factors 4 and enables cell-mediated degradation and matrix turnover 5. Although many 3D hydrogel culture systems have been utilized widely in various studies including agarose and alginate gels, we have used a biomimetic 3D culture system that has some distinct advantages for chondrocyte culture. Chondroitin sulfate (CS) is an abundant component in articular cartilage and the PEG-CS hydrogels have been shown to maintain and even enhance chondrogenic phenotype and facilitate cell-mediated matrix degradation and turnover 2,5. In addition, the mechanical properties of the hydrogel scaffold can be easily modulated by changing concentration of PEG and hence can be utilized to further enhance the regeneration potential of chondrocytes or a related cell type 6,7. PEG/CSMA is also biocompatible and hence has the potential for a direct clinical application in cartilage defects for example. The limitation for this system is its complexity and the use of photopolymerization that can potentially affect cell viability as compared to simpler systems like agarose, however the advantages for the chondrocyte culture outweigh the potential limitations.
The 3D hydrogel culture is compatible with conventional assay for evaluation of cell phenotype (gene expression, protein immunostaining) and functional outcome (quantification of cartilage matrix production, mechanical testing). This favorable 3D environment was tested to compare the tissue regeneration potential of human chondrocytes from three different aged populations in long-term 3D cultures.
The outcomes were evaluated via both phenotypic and functional assays. Juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogel culture. After 3 and 6 weeks, chondrogenic gene expression was upregulated in juvenile and adult chondrocytes but was downregulated in OA chondrocytes. Deposition of cartilage tissue components including aggrecan, type II collagen, and glycosaminoglycan (GAG) was high for juvenile and adult chondrocytes but not for OA chondrocytes. The compressive moduli of the resulting cartilage constructs also exhibited similar trends. In conclusion, both juvenile and adult chondrocytes exhibited chondrogenic and cartilage matrix disposition up to 6 weeks of 3D culture in hydrogels. In contrast, osteoarthritic chondrocytes revealed a loss of cartilage phenotype and minimal ability to generate robust cartilage.
このプロトコールで報告されたように、3Dヒドロゲルは、通常、単層培養物15で遭遇する線維軟骨細胞への細胞脱分化の過程を回避し、培養中の軟骨細胞表現型を維持することができます。また、chondrocytes-ヒドロゲル構築物の長期培養は、年齢や疾患に関連する本質的な細胞機能を維持し、良好な環境を明らかにしました。
3次元生体模倣ヒドロゲルの使用は、いくつかの利点を有します。まず、コンドロイチン硫酸(CS)、関節軟骨に見出される主要なコンポーネントを含めることは、コンドロイチナーゼを分泌することによってヒドロゲルマトリックスを分解し、新たに合成された軟骨細胞外マトリックス5、16を敷設するために細胞を可能にします。また、CSが示されています関節炎の関節における抗炎症特性を有すること。生体模倣ヒドロゲルはまた、軟骨修復における細胞送達のための足場材料として用いることができ、化学的に修飾することができますより良い組織生体材料統合17,18を容易にします 。
PEG-CSのヒドロゲルの使用は、長期的な軟骨細胞の文化や生化学的および機械的特性を評価することができます。ここでは、このプラットフォームは、軟骨工学のための最適な細胞タイプを定義するために、分化した軟骨細胞のさまざまなソースの比較分析のために有用であることができる方法を示しています。興味深いことに、ヒドロゲルにカプセル化された軟骨細胞は、それらの固有の能力に応じて生存したままと増殖します。 図2に示すように、ヒドロゲル組成物は、実際には、健康な若年成人軟骨細胞の増殖を支持する。グリコサミノグリカン(GAGによって評価機能細胞外マトリックスの沈着によって示されるように記述さヒドロゲルの組成及び構造はまた、軟骨組織の形成を促進します)定量。
追加の利点は、軟骨細胞ハイドロゲル構造物であります新たに形成された軟骨組織の機械的特性について評価することができます。一軸圧縮試験は、比較のために無細胞ヒドロゲル上で実行されるべきであることに注意してください。ヒドロゲルは、実際には、CSによる部分の剛性に固有の剛性を有します。負荷条件下で軟骨組織が 経験する生理学的な歪みが10~20であることが報告されているので(歪み率1%/ sで)5〜20%の一軸圧縮歪みが軟骨組織11,12の機械的試験に適用することができます%13,14。機械的試験への細胞を含んだし、無細胞ヒドロゲルの両方の応答は、培養エンドポイントで評価しました。私たちは、OA軟骨細胞を含む構築物の低い剛性とは対照的に、成人および若年性の軟骨細胞を含む構築物の同等の剛性を観察し、上記の例では。細胞 – ヒドロゲル構造体の機械的特性は、機能的特性の評価を可能にします細胞成熟性の詳細な分析を与えるに形成された組織。
結論として、軟骨組織を生成するために、別の軟骨細胞集団の可能性を研究するための3次元生体模倣ヒドロゲルの使用は、広く適用することができます。ここで説明したin vitro試験のほかに、細胞を含んだ構成物のin vivoでの移植は生理的な文脈で細胞成熟と再生可能性を研究するために想定することができます。追加の生体模倣因子とヒドロゲルプラットフォームのさらなる修飾はまた、軟骨細胞の増殖および成熟を最適化するように想定することができます。
The authors have nothing to disclose.
The authors would like to acknowledge Stanford Department of Orthopaedic Surgery and Stanford Coulter Translational Seed Grant for funding. J.H.L. would like to thank National Science Foundation Graduate Fellowship and DARE Doctoral Fellowship for support.
juvenile chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System ) | Lonza | CC-2550 | |
adult chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System) | Lonza | CC-2550 | |
poly(ethylene glycol diacrylate) | Laysan Bio | ACRL-PEG-ACRL-1000-1g | |
2-morpholinoethanesulfonic acid | Sigma | M5287 | |
photoinitiator | Irgacure | 2959 | |
sodium chloride | Sigma | S9888 | |
chondroitin sulfate sodium salt | Sigma | C9819 | |
N-hydroxysuccinimide | Sigma | 130672 | |
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride | Sigma | E1769 | |
2-aminoethyl methacrylate | Sigma | 516155 | |
dialysis tubing | Spectrum Laboratories | 132700 | |
Collagenase 2 | Worthington Biochemical | LS004177 | |
Collagenase 4 | Worthington Biochemical | LS004189 | |
DMEM/F12 media | HyClone, Thermo Scientific | SH3002301 | |
live/dead assay | Life Technologies | L3224 | |
Tri reagent | Life Technologies | AM9738 | |
Quant-iT™ PicoGreen® dsDNA Assay Kit | Invitrogen | P11496 | |
Sodium phosphate dibasic | Sigma | S3264 | |
Ethylenediaminetetraacetic acid disodium salt | Sigma | E5134 | |
L-Cysteine | Sigma | C1276 | |
1,9-dimethylmethylene blue | Sigma | 341088 | |
Instruments | |||
UV light equipment – XX-15LW Bench Lamp, 365nm | UVP | 95-0042-07 | |
Instron 5944 testing system | Instron Corporation | E5940 |