Summary

סינתזה של SrTiO מסומם-PR ללא אחיד<sub> 3</sub> קרמיקה והנכסים תרמיות שלהם

Published: August 15, 2015
doi:

Summary

A protocol for the synthesis and processing of polycrystalline SrTiO3 ceramics doped non-uniformly with Pr is presented along with the investigation of their thermoelectric properties.

Abstract

We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

Introduction

thermoelectrics תחמוצת הוצג להיות מועמדים מבטיחים עבור יישומים ותרמית בטמפרטורה גבוהה, מפרספקטיבות יציבות ועלות לנכסי תחבורה אלקטרוניות. בין thermoelectrics תחמוצת מסוג n, titanate מסומם מאוד סטרונציום (STO) משך תשומת לב רבה בשל התכונות אלקטרוניות המעניינות שלה. עם זאת, מוליכות תרמית כוללת גדולות (κ ~ W 12 מ '-1 K -1 ב 300 K לגבישים יחידים) 1 וניידות נמוך מוביל (μ ~ 6 סנטימטר 2 V -1 שניות -1 ב 300 K לגבישים יחידים) 1 להשפיע לרעה על ביצועים והתרמית שהוערך על ידי דמות ממדים של הכשרון, ZT = α 2 σT / κ, שבו α הוא מקדם Seebeck, σ המוליכות חשמליות, T הטמפרטורה המוחלטת בקלווין, וκ מוליכות תרמית הכוללת. אנחנו במסמך זה מגדירים את המונה כגורם הכח, PF = α 263; T. על מנת שחומר ותרמית תחמוצת זה להתחרות עם thermoelectrics אחר בטמפרטורה גבוהה (כגון סגסוגות SiGe), עלייה בולטת יותר בגורם הכח ו / או ירידה במוליכות תרמית סריג נדרשת.

רוב מחקרי ניסויים על מנת לשפר את התכונות ותרמית של STO התמקד בעיקר על ההפחתה של מוליכות תרמית באמצעות מתח-שדה ופיזור תנודות ההמוניות של פונונים. ניסיונות אלה כוללים: (i) יחידים או כפול סימום של Sr 2 + ו / או Ti 4+ אתרים, כמו המאמצים העיקריים ביחס לכיוון זה, 2,3 (ii) סינתזה של מבני Ruddlesden-פופר סריג הטבעי על מנת לצמצם את מוליכות תרמית נוספת באמצעות בידוד שכבות sro, 4 וכן (iii) הנדסת Composite על ידי תוספת של שלב שני nanosized. 5 עם זאת, עד לאחרונה, לא אסטרטגית שיפור דווחה substantially להגדיל את גורם כוח והתרמית בתחמוצות אלה. ערכי גורם כוח מרבי מדווח (PF) ביחיד בתפזורת וSTO פולי-גבישים כבר מרותקים לגבול עליון של PF <מטר 1.0 W -1 K -1.

מגוון של גישות וטכניקות עיבוד סינתזה להיות מועסק ליישם את הרעיונות ניסו לעיל. מסלולי סינתזת האבקה כוללים תגובה של מצב מוצק קונבנציונלית, 6 סול-ג'ל, 7 הידרותרמיות, 8 ובעירת סינתזה, ואילו 9 sintering הקונבנציונלי, 6 sintering ניצוץ פלזמה החם 10 דחופים ולאחרונה 12 הם בין הטכניקות הנפוצות בשימוש לdensify אבקות ל קרמיקה בתפזורת. עם זאת, לdopant דומה (למשל, לה) וריכוז סימום, קרמיקה בתפזורת וכתוצאה מכך להציג מגוון של נכסי תחבורה אלקטרוניים ותרמיים. זה הוא במידה רבה בשל הכימיה פגם בתוקף התהליך תלוי של SrTiO <תת> 3 שתוצאה בנכסי סינתזה תלויה. יש רק קומץ של דיווחי אופטימיזציה של פרמטרי הסינתזה ועיבוד ליהנות תחבורה ותרמית. ראוי להזכיר כי בשל פונון הקטן מאוד מהלך חופשי ממוצע בSrTiO 3 (pH ~ 2 ננומטר l ב 300 K), 11 ננומטרי הוא לא אפשרות מעשית לשיפור ביצועי TE של הקרמיקה STO התפזורת בעיקר באמצעות ההפחתה של מוליכות תרמית סריג.

לאחרונה, דיווחנו יותר מ -30% שיפור בדמות חימום של הכשרון בSrTiO 3 קרמיקה מסוממת-PR הלא אחידה שמקורם בגורם חימום חשמלי משופר בו זמנית ומופחת מוליכות תרמית. 12,13 בפרוטוקול וידאו מפורט זה, אנו מציגים ו לדון בצעדים של אסטרטגית הסינתזה שלנו להכנת אלה Pr מסומם קרמיקה STO מציגה תכונות אלקטרוניות וחימום משופרים.

Protocol

1. הכנת SrTiO 3 אבקה מסוממת-PR כדי להכין 10 גרם של אבקת Sr 0.95 Pr 0.05 Tio 3, לשקול את כמויות stoichiometric של SrCO אבקה 3 (7.53407 ז), הדוד nanopowder 2 (4.28983 ז), וPr 2 O 3 גוש sintered (.44299 ז) הבא התגובה עבור x = …

Representative Results

דפוסי diffractions רנטגן נאספו לאבקות כ- מוכנות וקרמיקה בתפזורת המתאימה כפונקציה של יחסי הציבור-תוכן (איור 1) כדי לחקור את ההשפעה של יחסי ציבור סימום בSrTiO 3 סריג, מסיסות של יחסי הציבור בSrTiO 3 והיווצרות של שלב המשני (ים). הדפוסים לאשר את הקמתה של SrTiO 3 ש?…

Discussion

בפרוטוקול זה, יש לנו הציג את הצעדים של אסטרטגית הסינתזה על מנת להכין בהצלחה 3 קרמיקה מסומם Pr SrTiO polycrystalline התפזורת מציגה תכונות אלקטרוניות וחימום משופרים. השלבים העיקריים של הפרוטוקול כוללים הסינתזה של המצב המוצק של SrTiO 3 האבקה מסוממת באוויר בלחץ אטמוספרי ו?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors wish to acknowledge the competitive faculty-initiated collaboration (FIC) grant from KAUST.

Materials

SrCO3 Powder, 99.9% Sigma Aldrich 472018
TiO2 Nanopowder, 99.5% Sigma Aldrich 718467
Pr2O3 Sintered Lumps, 99.9% Alfa Aesar 35663 
Name of  Equipment
Spark Plasma Sintering  Dr. Sinter Lab SPS-515S
Resistivity/Seebeck Coefficient Measurement System Ulvac-Riko ZEM-2
Laser Flash Thermal Diffusivity Measurement System Netzsch LFA-457 Microflash
Differential Scanning Calorimetry (DSC) System Netzsch 404C Pegasus
Physical Property Measurement system (PPMS) Quantum Design
Field Emission Scanning Electron Microscope (FE-SEM) Hitachi SU-6600
Energyy-dispersive X-ray Spectroscopy (EDS) Oxford Instruments
X-ray Diffractometer Rigaku Ultima IV
Bench-top Sputter Coater Denton Vacuum Desk II
Diamond  Wheel Saw South Bay Technology

References

  1. Ohta, S., Nomura, T., Ohta, H., Koumoto, K. High-temperature Carrier Transport and Thermoelectric Properties of Heavily La-or Nb-doped SrTiO3 Single Crystals. J. Appl. Phys. 97, (2005).
  2. Wang, H. C., et al. Enhancement of Thermoelectric Figure of Merit by Doping Dy in La0.1Sr0.9TiO3 Ceramic. Mater. Res. Bull. 45, 809-812 (2010).
  3. Bhattacharya, S., Mehdizadeh Dehkordi, A., Alshareef, H. N., Tritt, T. M. Synthesis–Property Relationship in Thermoelectric Sr1−xYbxTiO3−δ Ceramics. J. Phys. D: Appl. Phys. 47, 385302 (2014).
  4. Wang, Y., Lee, K. H., Ohta, H., Koumoto, K. Thermoelectric Properties of Electron Doped SrO(SrTiO3)n (n=1,2) Ceramics. J. Appl. Phys. 105, 1037011-1037016 (2009).
  5. Wang, N., et al. Effects of YSZ Additions on Thermoelectric Properties of Nb-Doped Strontium Titanate. J. Electron. Mater. 39, 1777-1781 (2010).
  6. Muta, H., Kurosaki, K., Yamanaka, S. Thermoelectric Properties of Rare Earth Doped SrTiO3. J. Alloys Compd. 350, 292-295 (2003).
  7. Shang, P. -. P., Zhang, B. -. P., Li, J. -. F., Ma, N. Effect of Sintering Temperature on Thermoelectric Properties of La-doped SrTiO3 Ceramics Prepared by Sol-gel Process and Spark Plasma Sintering. Solid State Sciences. 12, 1341-1346 (2010).
  8. Wang, Y., Fan, H. J. Sr1-xLaxTiO3 Nanoparticles: Synthesis, Characterization and Enhanced Thermoelectric Response. Scripta Materialia. 65, 190-193 (2011).
  9. Kikuchi, A., Okinakab, N., Akiyama, T. A Large Thermoelectric Figure of Merit of La-doped SrTiO3 Prepared by Combustion Synthesis with Post-Spark Plasma Sintering. Scripta Materialia. 63, 407-410 (2010).
  10. Obara, H., et al. Thermoelectric Properties of Y-Doped Polycrystalline SrTiO3.Jpn. J. Appl. Phys. 43, L540-L542 (2004).
  11. Koumoto, K., Wang, Y., Zhang, R., Kosuga, A., Funahashi, R. Oxide Thermoelectric Materials: A Nanostructuring Approach. Annu. Rev. Mater. Res. 40, 363-394 (2010).
  12. Mehdizadeh Dehkordi, A., et al. Large Thermoelectric Power Factor in Pr-Doped SrTiO3−δ Ceramics via Grain-Boundary-Induced Mobility Enhancement. Chem. Mater. 26, 2478-2485 (2014).
  13. Mehdizadeh Dehkordi, A., Bhattacharya, S., He, J., Alshareef, H. N., Tritt, T. M. Significant Enhancement in Thermoelectric Properties of Polycrystalline Pr-doped SrTiO3 Ceramics Originating from Nonuniform distribution of Pr dopants. Appl. Phys. Lett. 104, 1939021-1939024 (2014).
  14. . . Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. , (2015).
  15. Parker, W. J., Jenkins, R. J., Butler, C. P., Abbott, G. L. Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity. J. Appl. Phys. 32, 1679-1684 (1961).
  16. Cowan, R. D. Pulse Method of Measuring Thermal Diffusivity at High Temperatures. J. Appl. Phys. 34, 926-927 (1963).
  17. Mehdizadeh-Dehkordi, A. . An Experimental Investigation Towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics. , (2014).
  18. . . DSC Pegasus 404C Operating Manual. , (1999).
  19. Daw, J. E. Measurement of Specific Heat Capacity Using Differential Scanning Calorimeter. Report of US Department of Energy. , (2008).
  20. Tritt, T. M. . Thermal Conductivity: Theory, Properties and Applications. , (2004).
  21. . . SC7610 Sputter Coater Operating Manual. , (2002).
  22. Tritt, T. M., Rowe, D. M. Electrical and Thermal Transport Measurement Techniques for Evaluation of the figure-of-Merit of Bulk Thermoelectric Materials. Thermoelectrics Handbook: Macro to Nano. , 23-1-23-17 (2006).
  23. Burkov, A. T., Rowe, D. M. Measurements of Resistivity and Thermopower: Principles and Practical Realization. Thermoelectrics Handbook: Macro to Nano. , 22-1 (2006).
  24. . . Physical Property Measurement System: AC Transport Option User’s Manual. , (2003).
  25. Ohta, S., Ohta, H. Grain Size Dependence of Thermoelectric Performance of Nb-doped SrTiO3. Polycrystals. J. Ceram. Soc. Jpn. 114, 102 (2006).
  26. Wang, N., He, H., Ba, Y., Wan, C., Koumoto, K. Thermoelectric Properties of Nb-doped SrTiO3 Ceramics Enhanced by Potassium Titanate Nanowires Addition. J. Ceram. Soc. Jpn. 118, 1098 (2010).
  27. Ohta, S., et al. Large Thermoelectric Performance of Heavily Nb-doped SrTiO3 Epitaxial Film at High Temperature. Appl. Phys. Lett. 87, 092108 (2005).
  28. Kovalevsky, A., Yaremchenko, A., Populoh, S., Weidenkaff, A., Frade, J. Enhancement of Thermoelectric Performance in Strontium Titanate by Praseodymium Substitution. J. Appl. Phys. 113, 053704 (2013).
  29. Kovalevsky, A. V., et al. Towards a High Thermoelectric Performance in Rare-Earth Substituted SrTiO3: Effects Provided by Strongly-Reducing Sintering Conditions. Phys. Chem. 16, 26946 (2014).
  30. Dawson, J. A., Tanaka, I. Local Structure and Energetics of Pr- and La-Doped SrTiO3 Grain Boundaries and the Influence on Core–Shell Structure Formation. J. Phys. Chem. C. 118, 25765-25778 (2014).
  31. Mehdizadeh Dehkordi, A., et al. New Insights on the Synthesis and Electronic Transport in Bulk Polycrystalline Pr-doped SrTiO3−δ. Appl. Phys. Lett. 117, 055102 (2015).

Play Video

Citer Cet Article
Mehdizadeh Dehkordi, A., Bhattacharya, S., Darroudi, T., Zeng, X., Alshareef, H. N., Tritt, T. M. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties. J. Vis. Exp. (102), e52869, doi:10.3791/52869 (2015).

View Video