Summary

同时<em>体外</em两个由视网膜>功能测试<em>在体内</em>电图系统

Published: May 06, 2015
doi:

Summary

Ex vivo ERG can be used to record electrical activity of retinal cells directly from isolated intact retinas of animals or humans. We demonstrate here how common in vivo ERG systems can be adapted for ex vivo ERG recordings in order to dissect the electrical activity of retinal cells.

Abstract

An In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans. We show here how commercially available in vivo ERG systems can be used to conduct ex vivo ERG recordings from isolated mouse retinas. We combine the light stimulation, electronic and heating units of a standard in vivo system with custom-designed specimen holder, gravity-controlled perfusion system and electromagnetic noise shielding to record low-noise ex vivo ERG signals simultaneously from two retinas with the acquisition software included in commercial in vivo systems. Further, we demonstrate how to use this method in combination with pharmacological treatments that remove specific ERG components in order to dissect the function of certain retinal cell types.

Introduction

电图(ERG)是一种公认​​的技术,可以用来记录由光引发的视网膜的电活动。 ERG的信号由引起径向电流的电压变化(沿感光细胞和双极细胞的轴)中流动的视网膜的电阻外空间,主要产生的。第一ERG信号是从的鱼眼1表面记录在1865年霍姆格伦。艾因特霍芬和乔利1908除以2的ERG响应于光的发作分为三个不同的波,称为A,B,和c波,现在已知以反映感光体的主要的活性,ON双极细胞,和色素上皮细胞,分别3-8。 ERG可以从麻醉动物或人类( 体内 )的眼睛被记录时,从分离的眼制剂9,穿过分离完整视网膜( 离体 )3,10-15或跨越特定视网膜层与微电极(本地ERG)4,16。在这些中, 在体内 ERG是目前最广泛使用的方法,以评估视网膜的功能。它是一种非侵入性的技术,可用于诊断目的或跟随在动物或患者的视网膜疾病的进展。然而, 在体内 ERG录音制作一个复杂的信号,层峦叠成分,往往是由生理性眼外噪音( 呼吸和心脏活动)污染。

本地ERG可用于记录整个视网膜的特定层的信号,但它是最侵入性和具有最低信噪比(SNR),为相对于其他的ERG记录的配置。本地ERG也是技术要求高,需要昂贵的设备( 如,显微镜和显微操作)。 Transretinal ERG从完整的,孤立的视网膜( 体外 ERG)提供了在体内和局部ERG方法之间的妥协,允许稳定HIG^ h SNR录音来自动物或人17完整的视网膜。最近,这种方法已成功地用于研究哺乳动物,灵长类动物和人类视网膜18-20杆和视锥感光功能。另外,由于不存在在体外视网膜色素上皮,视网膜电图信号的正C波分量被除去,一个突出的负慢PIII成分显露在体外的录音。缓慢PIII组件已经显示从米勒胶质细胞的活性,以发起在视网膜21-23。因此,也可以采用离体的ERG的方法来研究Müller细胞在完整视网膜。几项研究也表明, 体外 ERG记录可以用来测量药剂浓度周围视网膜24和 ​​测试药物25-27的安全性和有效性。

在体内系统中的多个商业可用和许多实验室不一定具有广泛的背景电使用。相比之下, 体外设备还没有着落直到最近17并因此只有极少数的实验室目前正在这个强大的技术优势。这将是有益的,使提供给更多的实验室体外 ERG录音,以推进我们对视网膜的生理和病理知识,并开发新的疗法致盲疾病。我们在这里展示了一个简单而经济实惠的体外 ERG装置17,并显示如何可以组合使用几种市售体内的ERG系统来记录棒状和锥形介导的信号(a-和b-波)和功能Müller细胞(慢PIII)从完整的野生型小鼠视网膜。

Protocol

所有的实验方案符合指南实验动物的护理和使用,被批准的机构动物研究委员会在华盛顿大学。 1.设置灌注和标本持有人制备用于视网膜灌注新鲜的实验当天溶液。使用蒸馏水和去离子水。使用以下三种解决方案之一。 制备碳酸氢盐的含艾姆斯溶液(1L):1瓶艾姆斯的“媒介和1.9克碳酸氢钠的, 制备洛克溶液(以mM计):112.5氯化钠,3.6氯化钾,…

Representative Results

我们记录从暗适应的野生型闪光灯反应(WT)的C57BL / 6小鼠的视网膜通过以下通过使用不同的标准灌注液( 图2)如上所述和在图1中所示的实验方案。的响应波形和动力学以及视杆细胞的灵敏度出现在埃姆斯'和洛克的媒体( 图2A和B)类似。另一方面,在HEPES缓冲的Ringer溶液(无碳酸氢盐或5%的CO 2/95%O 2)的反应振幅均显著小。我们还…

Discussion

我们在这里表明,用于通过使用在体内的ERG系统组件与离体的ERG适配器一起同时获得高品质的离体的ERG记录从两个分离的小鼠视网膜的关键步骤。在此研究中,我们灌注既视网膜从具有相同的溶液(或者艾姆斯,洛克的或林格氏)的动物,但它也可以将灌注每个视网膜与不同的溶液用于药物测试的目的。为了获得高质量的数据,最重要的步骤是从电磁噪声,小心?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院资助EY019312和EY021126(VJK),EY002687到眼科及视觉科学系在华盛顿大学的支持,以及防盲研究。

Materials

In vivo ERG system OcuScience HMsERG www.ocuscience.us/id77.html
In vivo ERG system LKC Technologies UTAS-E 3000 www.lkc.com/products/UTAS/bigshot.html
Ex vivo adapter OcuScience Ex VIVO ERG adapter www.ocuscience.us/id107.html
Dissection microscope North Central Instruments Leica M80 May use any brand
IR emitter Opto Diode Corp. OD-50L www.optodiode.com
Prowler Night Vision Scopes B.E. Meyers Electro Optics D4300-I Military grade product.
Red filter Rosco Laboratories Roscolux #27 Medium Red May be used instead of IR system
Red head light OcuScience ERGX011 www.ocuscience.us/catalog/i29.html
Microscissors WPI, Inc. 500086 www.wpiinc.com/
Dumont tweezers #5 WPI, Inc. 14101
Razor blades Electron Microscopy Sciences 72000 www.emsdiasum.com
Scale Metler Toledo AB54-S/FACT May use any brand
pH meter and electrode Beckman Coulter pHI 350 May use any brand
NaCl Sigma-Aldrich S7653 May use any brand
KCl Sigma-Aldrich 60129 May use any brand
MgCl2 Sigma-Aldrich 63020 1.0 M solution
CaCl2 Sigma-Aldrich 21114 1.0 M solution
EDTA Sigma-Aldrich 431788 May use any brand
HEPES Sigma-Aldrich H3375 May use any brand
Sodium Bicarbonate Sigma-Aldrich S6297 May use any brand
Ames medium Sigma-Aldrich A1420 May use any brand
BaCl2 Sigma-Aldrich B0750 May use any brand
DL-AP4 Tocris Bioscience 101 May use any brand
Succinic acid disodium salt Sigma-Aldrich 224731 May use any brand
L-Glutamic acid Sigma-Aldrich G2834 May use any brand
D-(+)-Glucose Sigma-Aldrich G7528 May use any brand
Leibovitz culture medium L-15 Sigma-Aldrich L4386 May use any brand
MEM vitamins Sigma-Aldrich M6895
MEM amino acids Sigma-Aldrich M5550
Carbogen Airgas UN3156 5% CO2

References

  1. Armington, J. C. . The Electroretinogram. , (1974).
  2. Einthoven, W., Jolly, W. A. The form and magnitude of the electrical response of the eye to stimulation by light at various intensities. Q J Exp Physiol. 1, 43 (1908).
  3. Granit, R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J. Physiol. 77, 207-239 (1933).
  4. Penn, R. D., Hagins, W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 223, 201-204 (1969).
  5. Stockton, R. A., Slaughter, M. M. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J. Gen. Physiol. 93, 101-122 (1989).
  6. Robson, J. G., Frishman, L. J. Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis. Neurosci. 12, 837-850 (1995).
  7. Green, D. G., Kapousta-Bruneau, N. V. A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Vis. Neurosci. 16, 727-741 (1999).
  8. Steinberg, R. H., Schmidt, R., Brown, K. T. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature. 227, 728-730 (1970).
  9. Wilson, W. S., Shahidullah, M., Millar, C. The bovine arterially-perfused eye: an in vitro method for the study of drug mechanisms on IOP, aqueous humour formation and uveal vasculature. Curr. Eye Res. 12, 609-620 (1993).
  10. Frank, R. N., Dowling, J. E. Rhodopsin photoproducts: effects on electroretinogram sensitivity in isolated perfused rat retina. Science. 161, 487-489 (1968).
  11. Donner, K., Hemila, S., Koskelainen, A. Temperature-dependence of rod photoresponses from the aspartate-treated retina of the frog (Rana temporaria). Acta Physiol. Scand. 134, 535-541 (1988).
  12. Green, D. G., Kapousta-Bruneau, N. V. Electrophysiological properties of a new isolated rat retina preparation. Vision Res. 39, 2165-2177 (1999).
  13. Hamasaki, D. I. The effect of sodium ion concentration on the electroretinogram of the isolated retina of the frog. J. Physiol. 167, 156-168 (1963).
  14. Luke, M., et al. The isolated perfused bovine retina–a sensitive tool for pharmacological research on retinal function. Brain Res. Brain Res. Protoc. 16, 27-36 (2005).
  15. Bastian, B. L., Fain, G. L. Light adaptation in toad rods: requirement for an internal messenger which is not calcium. J. Physiol. 297, 493-520 (1979).
  16. Arden, G. B. Voltage gradients across the receptor layer of the isolated rat retina. J. Physiol. 256, 333-360 (1976).
  17. Vinberg, F., Kolesnikov, A. V., Kefalov, V. J. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vision Res. 101, 108-117 (2014).
  18. Nymark, S., Heikkinen, H., Haldin, C., Donner, K., Koskelainen, A. Light responses and light adaptation in rat retinal rods at different temperatures. J. Physiol. 567, 923-938 (2005).
  19. Heikkinen, H., Nymark, S., Koskelainen, A. Mouse cone photoresponses obtained with electroretinogram from the isolated retina. Vision Res. 48, 264-272 (2008).
  20. Wang, J. S., Kefalov, V. J. An alternative pathway mediates the mouse and human cone visual cycle. Curr. Biol. 19, 1665-1669 (2009).
  21. Bolnick, D. A., Walter, A. E., Sillman, A. J. Barium suppresses slow PIII in perfused bullfrog retina. Vision Res. 19, 1117-1119 (1979).
  22. Newman, E. A. Potassium conductance block by barium in amphibian Muller cells. Brain Res. 498, 308-314 (1989).
  23. Oakley, B., Katz, B. J., Xu, Z., Zheng, J. Spatial buffering of extracellular potassium by Muller (glial) cells in the toad retina. Exp. Eye Res. 55, 539-550 (1992).
  24. Nymark, S., Haldin, C., Tenhu, H., Koskelainen, A. A new method for measuring free drug concentration: retinal tissue as a biosensor. Invest. Ophthalmol. Vis. Sci. 47, 2583-2588 (2006).
  25. Walter, P., Luke, C., Sickel, W. Antibiotics and light responses in superfused bovine retina. Cell. Mol. Neurobiol. 19, 87-92 (1999).
  26. Luke, M., et al. The safety profile of alkylphosphocholines in the model of the isolated perfused vertebrate retina. Graefes Arch. Clin. Exp. Ophthalmol. 248, 511-518 (2010).
  27. Januschowski, K., et al. Electrophysiological toxicity testing of VEGF Trap-Eye in an isolated perfused vertebrate retina organ culture model. Acta Ophthalmol. 92, e305-e311 (2014).
  28. Kolesnikov, A. V., Kefalov, V. J. Transretinal ERG recordings from mouse retina: rod and cone photoresponses. J Vis Exp. , (2012).
  29. Koskelainen, A., Hemila, S., Donner, K. Spectral sensitivities of short- and long-wavelength sensitive cone mechanisms in the frog retina. Acta Physiol. Scand. 152, 115-124 (1994).
  30. Lyubarsky, A. L., Falsini, B., Pennesi, M. E., Valentini, P., Pugh, E. N. UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J. Neurosci. 19, 442-455 (1999).
  31. Lyubarsky, A. L., Daniele, L. L., Pugh, E. N. From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vision Res. 44, 3235-3251 (2004).
  32. Azevedo, A. W., Rieke, F. Experimental protocols alter phototransduction: the implications for retinal processing at visual threshold. J. Neurosci. 31, 3670-3682 (2011).
  33. Carter-Dawson, L. D., LaVail, M. M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188, 245-262 (1979).
  34. Fain, G. L., Matthews, H. R., Cornwall, M. C., Koutalos, Y. Adaptation in vertebrate photoreceptors. Physiol. Rev. 81, 117-151 (2001).
  35. Calvert, P. D., Strissel, K. J., Schiesser, W. E., Pugh, E. N., Arshavsky, V. Y. Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol. 16, 560-568 (2006).
  36. Schneeweis, D. M., Schnapf, J. L. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J. Neurosci. 19, 1203-1216 (1999).
  37. Heikkinen, H., Vinberg, F., Nymark, S., Koskelainen, A. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. J. Neurophysiol. 105, 2309-2318 (2011).
  38. Gouras, P., MacKay, C. J. Growth in amplitude of the human cone electroretinogram with light adaptation. Invest. Ophthalmol. Vis. Sci. 30, 625-630 (1989).
  39. Peachey, N. S., Goto, Y., al-Ubaidi, M. R., Naash, M. I. Properties of the mouse cone-mediated electroretinogram during light adaptation. Neurosci. Lett. 162, 9-11 (1993).

Play Video

Citer Cet Article
Vinberg, F., Kefalov, V. Simultaneous ex vivo Functional Testing of Two Retinas by in vivo Electroretinogram System. J. Vis. Exp. (99), e52855, doi:10.3791/52855 (2015).

View Video