The upright imaging method described in this protocol allows for the detailed visualization of the poles of a developing Drosophila melanogaster egg. This end-on view provides a new perspective into the arrangements and morphologies of multiple cell types in the follicular epithelium.
Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.
Исследование дрозофилы оказывает большое понимание генетического регулирования в широком диапазоне явлений. В частности, было обширное исследование развития яиц, потому что оогенез обеспечивает послушный путь, чтобы исследовать различные процессов развития, в том числе ткани рисунка, изменения клеточной полярности, переключение клеточного цикла и поступательного регулирования 1,2,3,4. Одним из важных событий во морфогенетического оогенезе это спецификация, приобретение подвижности и миграции из набора клеток, называемых пограничные клетки (обзор в 5). Поскольку миграции клеток является ключевым признаком животного морфогенеза, и из-за генетического регулирование этого процесса хорошо сохраняется, механизмы, определенные в мух могут быть важными в других контекстах. Таким образом, мы исследуем молекулярную контроль миграции границы ячейки. Для наших исследований мы разработали новый метод, чтобы наблюдать передней полюсов развития яиц,где возникают пограничные клетки, чтобы изучить, как они развиваются в деталях.
В яичнике, яичные камеры на различных стадиях развития существуют вдоль цепочек, называемых овариол, которые заключены в тонкий оболочки (рис 1А). Каждое яйцо камера будет перейти к форме одно яйцо. Во время оогенеза, несколько различных типов элементов должны развиваться в скоординированной манере. D. MELANOGASTER яйцо камера состоит из 16 зародышевой линии клеток, в том числе один ооцит, окруженный однослойной фолликулярного эпителия 6. Небольшое количество специализированных клеток, называемых полярных клетки, возникают на передней и задней опор эпителия. Пограничные клетки 6-8 происходят в передней эпителия яйцевой камеры, вызванного полярных клеток 5,7. В середине оогенеза (стадия 9), пограничные клетки отделяются от своих соседей и мигрируют между питающих клеток, чтобы достичь яйцеклетки на заднем яйцевой камеры 5,7. Это движение должно быть выполненов то время как пограничные клетки остаются в кластере окружающей два неподвижных белых клеток, что делает этот тип коллективной миграции клеток. Успешное миграция границ клеток кластера обеспечивает правильное развитие микропиле яичной скорлупы, которая необходима для оплодотворения.
Передние полярные клетки указания судьбу границы клеток путем активации каскада трансдукции сигнала. Полярные клетки секретируют цитокин, непарных (UPD), который связывается с рецептором трансмембранной, Domeless (купол), на соседней ячейки стручка на стадии развития 8 ооцитов 8,9. Связывание UPD вызывает Janus тирозин-киназы (ЯК) фосфорилировать сигнал датчика и активатора транскрипции (STAT) 8,10,11. STAT затем переходит к ядру, чтобы активировать транскрипцию. Медленные Клетки границе (SLBO) является фактором транскрипции, который является прямым транскрипции цель STAT и также необходим для границы миграции клеток 12. Боковые виды яиц камер указывают тшляпа STAT деятельность регулируется в градиенте через передний эпителий 8,11,13. Фолликулярных клеток близкие к полярным клеток имеют самые высокие уровни активированного STAT, таким образом, они становятся пограничные клетки и вторгаются в соседнюю зародышевой линии ткани.
Чтобы понять, как пограничные клетки указан внутри и отделить от эпителия, мы должны наблюдать, как ткань организована. Если мы рассматриваем яичные камеры от передне-на перспективу, можно было бы ожидать радиальную симметрию STAT деятельности в фолликулярных клеток, окружающих полярные клетки. Конечный на виду также более точно показать различия мембранных белков и межклеточных интерфейсов до и во время отрыва, чем сравнение клеток в различных фокальных плоскостях. Поскольку яйцо камеры продолговатые и прикреплены друг к другу с помощью стебля клеток, они оседают на предметные стекла в поперечном направлении, что делает его трудно наблюдать переднюю архитектуру. Таким образом, много информации о клетках на полюсах яиц камеры имеетбыли выведены из боковых взглядов. Хотя некоторая информация может быть получена путем алгоритмических 3-D реконструкций оптических секций, комбинационного рассеяния света, Фотообесцвечивания и бедных рамки резолюции в Z-оси сделать эту информацию более подробно и надежны в отсутствии дорогих методов, как супер-разрешением микроскопии 14 , Другие виды секции на основе изображений (например, электронная микроскопия или микротом секционирования) требуют больших манипуляций тканей, в том числе обезвоживания, увеличивая вероятность для артефактов. Таким образом, мы разработали новый метод к фотографиям D. MELANOGASTER яичные камеры в то время как в вертикальном положении. Этот метод уже доказали свою полезность в объяснении, как подвижные клетки суждено (см репрезентативные результаты и штатное др рассматривается), и, вероятно, будет более широко ценным при исследовании других аспектов оогенеза.
Здесь мы опишем метод монтажа и изображение небольшой, развивающееся яйцо камеры с точки зрения конечного дальше. Общие методы для работы с изображениями яйца камер оптимизированы для боковым видом и, прежде всего, позволяют точно визуализировать Медио-боковая фолликулярных клеток п?…
The authors have nothing to disclose.
We appreciate assistance from members of the fly community, particularly Dr. Denise Montell, Dr. Lynn Cooley, and Dr. Pernille Rorth, for reagents. We thank Flybase, the Bloomington Drosophila Stock Center, and Developmental Studies Hybridoma Bank for information and providing fly stocks and antibodies, respectively. LM is supported by the Department of Education Grant, Graduate Assistance in the Areas of National Need (GAANN) training fellowship (P200A120017) and by a NIGMS Initiative for Maximizing Student Development Grant (2 R25-GM55036). A portion of the microscopy work was supported by NSF MRI grant DBI-0722569 and the Keith R. Porter Core Imaging Facility. Research was supported in part by a NSF CAREER Award (1054422) and a Basil O’Connor Starter Scholar Award from the March of Dimes, both awarded to MSG.
Name of Reagent/ Equipment | Company | Catalog Number | Comments/Description |
0.1 M Potassium phosphate Buffer (KPO4 Buffer) | Add 3.1 g of NaH2PO4•H2O and 10.9 g of Na2HPO4 (anhydrous) to distilled H2O to make a volume of 1 L. The pH of the final solution will be 7.4. This buffer can be stored for up to 1 mo at 4°C. | ||
16% Paraformaldehyde aqueous solution, EM grade | Electron Microscopy Sciences | 15710 | methanol-free to preserve GFP fluorescence |
30G x 1/2 inch needle | VWR | BD305106 | Regular bevel |
Active Dry Yeast | Genesee Scientific | 62-103 | To fatten female flies |
Bovine Serum Albumin | PAA-cell culture company | A15-701 | Used in NP40 Wash Buffer |
Dumont #5 Forceps | Fine Science Tools | 11295-10 | Dumostar alloy, biologie tip; sharp tips are essential for ovariole dissection |
DAPI (4′,6-Diamidino-2-phenylindole dihydrochloride) | Sigma Aldrich | D9542 | 5mg/ml stock solution |
Fetal Bovine Serum (FBS) | Life Technologies | 16140-071 | Added to supplement dissection medium (10%) |
Glass culture tube | VWR | 47729-576 | 14mL |
Glass Depression Slides | VWR | 470019-020 | 1.2 mm Thick, Double Cavity |
Glycerin Jelly | Electron Microsocpy Sciences | 17998-10 | Mounting media |
Glycerol | IBI Scientific | IB15760 | 70% in PBS |
IGEPAL CA-630 | Sigma Aldrich | I3021-500ML | (interchangable for Nonidet P-40) Used in NP40 Wash Buffer |
Leica Fluorescent Stereoscope | Leica Microsystems | ||
Leica SP5 Confocal Microscope | Leica Microsystems | 40x/0.55NA dry objective | |
Micro spatula | VWR | 82027-518 | Stainless steel |
Microknife | Roboz Surgical Instrument Company | 37-7546 | 45ᵒ angle |
Microscope Slide | VWR | 16004-368 | 75x25x1 mm |
NP40 Wash Buffer | 50mM TRIS-HCL, 150mM NaCl, 0.5% Ipegal, 1mg/ml BSA, and 0.02% sodium azide | ||
Penicillin-Streptomycin-Glutamine | Life Technologies | 10378-016 | Added to supplement dissection medium (0.6X) |
Petridish- Polysterine, sterile | VWR | 82050-548 | 60Wx15H mm |
Phosphate Buffer Saline | Sigma Aldrich | P3813-10PAK | 10 packs of Powder |
Potassium phosphate dibasic | Sigma Aldrich | P3786-500G | Used in 0.1M KPO4 Buffer |
Potassium phosphate monobasic | Sigma Aldrich | P9791-500G | Used in 0.1M KPO4 Buffer |
Schneider’s Insect Medium | Life Technologies | 11720018 |
With L-glutamine and sodium bicarbonate |
Sodium azide | Sigma Aldrich | S2002-25G | Used in fluorescent antibody staining |
Sodium chloride | Sigma Aldrich | S3014-500G | Used in NP40 Wash Buffer |
TRIS-HCL | IBI Scientific | IB70144 | 1M TRIS-HCL, pH 7.4 |
Volocity 3D Image Analysis Software | PerkinElmer | For processing confocal Z-stacks |