To replicate laboratory settings, online data collection methods for visual tasks require tight control over stimulus presentation. We outline methods for the use of a web application to collect performance data on two tests of visual attention.
Онлайн методы сбора данных занимает особое место в поведенческих ученых, потому что они предлагают обещание гораздо больше, и намного больше образцов репрезентативные данные, чем обычно может быть собрана на университетских кампусах. Однако, прежде чем эти методы могут быть широко принят, ряд технологических проблем необходимо преодолеть – в частности, в экспериментах, где жесткий контроль над свойствами стимул необходимости. Здесь мы представляем методы для сбора данных о производительности двух тестов зрительного внимания. Оба испытания требуют контроля над углом зрения стимулов (которые в свою очередь, требует знания расстояния просмотра, размер экрана, разрешение экрана, и т.д.) и сроки раздражителей (как показали тесты включают либо кратко мелькнула раздражители или стимулы, которые перемещаются в специфических ставок). Данные, собранные на этих испытаниях из более чем 1700 онлайн участников были совместимы с данными, собранными в лабораторных-разрядных версий тех же тестов. Эти результатыпоказывают, что при надлежащем уходе, размер времени / стимул зависимых задач могут быть развернуты в настройках интернет-обозреватель.
За последние пять лет наблюдается всплеск интереса в использовании онлайн-поведенческих методов сбора данных. В то время как подавляющее большинство публикаций в области психологии используются потенциально не репрезентативные тематические населения 1 (то есть, в первую очередь, студенты колледжа) и часто достаточно небольшой размер выборки (а именно, как правило, в диапазоне десятков субъектов), онлайн методов предложить обещание гораздо более разнообразных и более крупных образцов. Например, сервис Amazon Механический турок был предметом ряда недавних исследований, как для описания характеристик «рабочего» населения и использование этого населения в поведенческих исследований 2-6.
Тем не менее, одно существенное беспокойство в связи с такими методов относительное отсутствие контроля над критических переменных стимулирования. Например, в большинстве визуальных психофизических задач, стимулы описаны в терминахугол зрения. Расчет углов зрения требует точных измерений расстояния просмотра, размер экрана, и разрешение экрана. В то время как эти параметры являются тривиальными для измерения и контроля в лабораторных условиях (где есть известный монитор и участники просматривают стимулы в то время как в подбородок остальные были размещены в известном расстоянии от монитора), то же самое нельзя сказать о коллекции данных в онлайновом режиме. В онлайновой среде, не только участники неизбежно использовать широкий спектр мониторов различных размеров с разными настройками программного обеспечения, они также не могут иметь легкий доступ к линейки / рулетки, которая позволила бы им для определения размера экрана монитора или иметь знания, необходимые чтобы определить свои программные и аппаратные параметры (например, частоту обновления, разрешение).
Здесь мы опишем набор методов для сбора данных о двух хорошо известных тестов визуального внимания – полезное поле зрения (UFOV) парадигмы 7 и несколько объект слежения (MOT) задачи <sup> 8 -, избегая при этом как можно больше источников изменчивости, которые присущи онлайн измерений. Эти задачи могут быть выполнены любым участником с подключением к Интернету и совместимый браузер HTML5. Участники, которые не знают их размер экрана гуляют через процесс измерения с использованием широко доступных элементов стандартных размеров (то есть, кредитная карта / CD – рисунок 1).
Данные об этих двух задач были собраны из более чем 1700 участников в масштабной онлайн-открытый курс. Средняя производительность этого онлайн образца был очень согласуются с результатами, полученными в строго контролируемых лабораторных основе мер и тех же задач 9,10. Наши результаты, таким образом, в соответствии с растущим количеством литературы, демонстрирующей эффективность онлайновых методов сбора данных, даже в задачах, требующих особый контроль над условиями просмотра.
Коллекция Интернет данных имеет ряд преимуществ по сравнению с обычной сбора данных лабораторного. Они включают в себя потенциал попробовать гораздо больше представительства населения, чем типичный колледжа студентов бассейном, используемой в этой области, и возможность получить го…
The authors have nothing to disclose.
The authors have nothing to disclose.
Name of Reagent/ Equipment | Company | Catalog Number | Comments/Description |
Computer/tablet | N/A | N/A | It must have an internet connection and an HTML5 compatible browser |
CD or credit card | N/A | N/A | May not be needed if participant already knows the monitor size |