Summary

Een eenvoudige en snelle protocol bij niet-enzymatisch distantiëren Verse menselijke weefsels voor de Analyse van Infiltrating Lymfocyten

Published: December 06, 2014
doi:

Summary

This protocol describes the rapid non-enzymatic dissociation of fresh human tissue fragments for qualitative and quantitative assessment of CD45+ cells (lymphocytes/leukocytes) present in various normal and malignant human tissues. Additionally, the supernatant obtained from the primary tissue homogenate can be collected and stored for further analysis or experimentation.

Abstract

Het vermogen van maligne cellen aan het immuunsysteem, gekenmerkt door tumor ontsnappen van zowel aangeboren en adaptieve immuunreacties ontwijken nu aanvaard als een belangrijk kenmerk van kanker. Ons onderzoek op borstkanker richt zich op de actieve rol die tumor-infiltrerende lymfocyten spelen in tumorprogressie en prognose van de patiënt. Naar dit doel hebben we een methode voor de snelle isolatie van intacte lymfoïde cellen van normale en abnormale weefsels in een poging om hen nabij hun natieve toestand te evalueren. Homogenaten bereid met een mechanische dissociator geven beide verhoogde levensvatbaarheid en cel herstel met behoud van oppervlakte receptor expressie in vergelijking met enzym-verteerd weefsels. Bovendien, enzymatische digestie van de overblijvende onoplosbare materiaal geen bijkomende CD45 + cellen aangeeft dat kwantitatieve en kwalitatieve metingen in de primaire homogenaat waarschijnlijke gezondheidstoestand van infiltrerende subpopulaties in het weefsel Fragm herstellenent. De lymfoïde cellen in deze homogenaten kunnen gemakkelijk worden gekarakteriseerd met behulp van immunologische (fenotype, proliferatie, etc.) en moleculaire (DNA, RNA en / of eiwit) nadert. CD45 + cellen kunnen ook worden gebruikt voor subpopulatie zuivering, in vitro uitbreiding of cryopreservatie. Een bijkomend voordeel van deze benadering is dat het primaire weefsel supernatant van de homogenaten worden gebruikt om te karakteriseren en te vergelijken cytokinen, chemokinen, immunoglobulinen en antigenen aanwezig in normale en maligne weefsels. Dit protocol functioneert uitstekend voor menselijk borstweefsel en dienen voor een breed scala van normale en abnormale weefsels.

Introduction

The tumor microenvironment is composed of various cell types with numerous studies showing they each play distinct and important roles in tumorigenesis1,2. These include, but are not limited to, infiltrating immune cells, stromal cells, endothelial cells and tumor cells3. Ex vivo studies of tumor infiltrating lymphocytes (TIL; CD45+ cells or leukocytes, which are predominantly lymphocytes in breast tumors) from fresh human tissue samples is made difficult by their low frequency, the small sample sizes often available for research and the potential for loss of viability during extraction. Because immune cells infiltrating tumors are usually present as passengers rather than permanent residents in general they are easier to release from the tissue matrix.

Dissociating tumor tissue while maintaining cellular integrity is technically challenging and has traditionally been performed using a combination of mechanical and enzymatic steps to prepare single cell suspensions4-8. This approach involves lengthy incubation periods and is associated with a significant reduction in cell viability as well as the loss of cell surface receptors by enzymatic cleavage. High quality flow cytometric studies characterizing TIL in the tumor microenvironment as well as clean purifications of CD45+ subpopulations by flow cytometry or antibody-coated beads are more difficult to achieve from enzyme-digested tumor tissue. In addition, the supernatant (SN) from the resulting tumor homogenate is not amenable to further analysis including quantification of secreted proteins (cytokines, chemokines, immunoglobulins or tumor antigens) or experimental treatment of normal cells, because of the potential for protein degradation in the enzymatic digests.

In our search for a method to prepare single cell homogenates from breast tissues [including tumor, non-adjacent non-tumor (NANT) and normal (from mammary reductions) breast tissues] without enzymatic digestion, we tested a variety of mechanical homogenization techniques. Homogenates prepared using a mechanical dissociator had increased cell viability (2-fold) and total cell recovery (2-fold) while preserving surface receptor expression. Enzymatic digestion of the remaining insoluble material did not recover additional CD45+ cells suggesting they were all released in the initial homogenate. Thus, this rapid and simple approach allows both qualitative and quantitative assessment of the CD45+ subpopulations present in various normal and malignant human tissues. An added advantage of this approach is that the SN from the initial homogenate (primary tissue SN) can be collected and stored for further analysis or experimentation.

Protocol

OPMERKING: Alle specimens verkregen werden met behulp van een protocol dat door de Medisch Ethische Commissie van het Instituut Jules Bordet goedgekeurd met schriftelijke toestemming verkregen van elke patiënt. 1. Bereiding van het weefselhomogenaat Ontleden gereseceerde weefsels (maligne en normaal weefsel weggesneden uit de operatiekamer) zijn in de pathologie lab door opgeleid personeel voor onmiddellijke pickup. Tumor, NANT (die het verst van de tumor mogelijk) en normaal wee…

Representative Results

Enzymatische digestie van weefsel fragmenten met hetzij commercieel verkrijgbaar weefsel dissociatie oplossingen of diverse laboratorium mengsels van collagenase, DNase en / of hyaluronidase remmers, splitsen diverse receptoren op het celoppervlak. Onze studies, richtte zich op CD4 + T-cellen infiltrerende borsttumoren, werden snel gepresenteerd met een groot technisch probleem door splitsing van het oppervlak CD4 receptoren middels standaard enzymatische digestie protocollen 4-8. We testten versch…

Discussion

Deze studie beschrijft een geoptimaliseerde werkwijze voor de snelle bereiding van normaal en kwaadaardig borstweefsel homogenaten zonder enzymatische digestie voor daaropvolgende celsortering, extractie, cryopreservatie en / of fenotypische analyse van CD45 + subpopulaties. Het doel van deze experimentele aanpak is om beelden van de TIL die nauw geven hun in vivo staat en ze te vergelijken met normale weefsels met een minimum aan manipulatie van de weefsels vers van de operatiekamer te produceren. T…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dit werk werd ondersteund door subsidies fromthe Belgisch Fonds voor Wetenschappelijk Onderzoek (FNRS), Les Amis de l'Institut Bordet, FNRS-Opération Televie, Plan Cancer van België, Fonds Lambeau-Marteaux, Fonds JC Heuson en Fonds Barsy.

Materials

Equipment Company Catalog Number Comments/Description
GentleMacs Dissociator  Miltenyi Biotec 130-093-235 BD Medimachine is somewhat equivalent
Centrifuge 5810 R Eppendorf N/A or other standard table top centrifuge
Centrifuge 5417 R Eppendorf N/A or other standard microcentrifuge
Esco Class II A2 Biosafety Cabinet ESCO global N/A or other standard BSL2 hood
Inverted Microscope Nikon eclipse TS100 N/A or other microscope compatible for a hemacytometer
Bürker Chamber Marienfield  640210 or other standard hemacytometer
Navios Flow Cytometer Beckman Coulter N/A or other flow cytometer (8-10 color recommended)
Materials Company Catalog Number Comments/Description
GentleMacs C-Tube Miltenyi Biotec 130-096-344 BD Medimachine uses Filcon
Cell Culture Dish Sarstedt 72,710 or other non-pyrogenic plasticware 
Disposable Scalpel Swann-Morton 0510 or standard single use sterile scalpel
BD Cell Strainer 40µm Becton Dickinson 734-0002 or other non-pyrogenic plasticware 
BD Falcon Tube 50mL Becton Dickinson 352070 or other non-pyrogenic plasticware 
BD Falcon Tube 15mL Becton Dickinson 352097 or other non-pyrogenic plasticware 
BD FACS Tube 5mL Becton Dickinson 352008 or other non-pyrogenic plasticware 
Sterile Pasteur Pipette 5 mL  VWR 612-1685 or other non-pyrogenic plasticware 
Microfuge Tube 1.5 mL Eppendorf 7805-00 or other non-pyrogenic plasticware 
Reagents Company Catalog Number Comments/Description
X-Vivo 20 Lonza BE04-448Q serum-free medium recommended
Phosphate buffered saline Lonza BE17-516F standard physiological PBS
Trypan blue  VWR 17942E or other vital stain
VersaLyse Beckman Coulter A09777 for flow cytometry experiments
Fixable viability Dye eFluor 780  eBioscience 65-0865-14 for flow cytometry experiments
anti-CD3 FITC BD Biosciences 345763 for flow cytometry experiments
anti-CD3 Vio Blue Miltenyi Biotec 130-094-363 for flow cytometry experiments
anti-CD4 PE BD Biosciences 345769 for flow cytometry experiments
anti-CD4 APC Miltenyi Biotec 130-091-232 for flow cytometry experiments
anti-CD8 ECD Beckman Coulter 737659 for flow cytometry experiments
anti-CD8 PerCP BD Biosciences 345774 for flow cytometry experiments
anti-CD19 APC-Vio770 Miltenyi Biotec 130-096-643 for flow cytometry experiments
anti-CD45 VioGreen Miltenyi Biotec 130-096-906 for flow cytometry experiments

References

  1. Chen, D. S., Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 39 (1), 1-10 (2013).
  2. Boudreau, A., van’t Veer, J. L., Bissell, M. J. An ‘elite hacker’: breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity. Cell Adh Migr. 6 (3), 236-248 (2012).
  3. Gajewski, T. F., Schreiber, H., Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14 (10), 1014-1022 (2013).
  4. Quezada, S. A., et al. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med. 205 (9), 2125-2138 (2008).
  5. Grange, C., et al. Phenotypic characterization and functional analysis of human tumor immune infiltration after mechanical and enzymatic disaggregation. J Immunol Methods. 372 (1-2), 119-126 (2011).
  6. McCauley, H. A., Guasch, G. Serial orthotopic transplantation of epithelial tumors in single-cell suspension. Methods Mol Biol. 1035, 231-245 (2013).
  7. Gros, A., et al. Myeloid cells obtained from the blood but not from the tumor can suppress T-cell proliferation in patients with melanoma. Clin Cancer Res. 18 (19), 5212-5223 (2012).
  8. Zirakzadeh, A. A., Marits, P., Sherif, A., Winqvist, O. Multiplex B cell characterization in blood, lymph nodes, and tumors from patients with malignancies. J Immunol. 190 (11), 5847-5855 (2013).
  9. Gu-Trantien, C., et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 123 (7), 2873-2892 (2013).
  10. Buisseret, L., et al. Lymphocytes Infiltrating Breast Cancer : Density, Composition And Organization. Annals of Oncology. 25 (1), 17 (2014).
  11. Garaud, S., et al. Characterization of B Cells Infiltrating Human Breast Cancer. Annals of Oncology. 25 (1), 18 (2014).
  12. Gu-Trantien, C., et al. Cxcl13-Producing Follicular Helper T Cells In Human Breast Cancer. Annals of Oncology. 25 (1), 17 (2014).
  13. Yee, C. The use of endogenous T cells for adoptive transfer. Immunol Rev. 257 (1), 250-263 (2014).
  14. Butler, M. O., et al. Ex vivo expansion of human CD8+ T cells using autologous CD4+ T cell help. PLoS One. 7 (1), 30229 (2012).
  15. Ye, Q., et al. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med. 9, 131 (2011).

Play Video

Citer Cet Article
Garaud, S., Gu-Trantien, C., Lodewyckx, J., Boisson, A., De Silva, P., Buisseret, L., Migliori, E., Libin, M., Naveaux, C., Duvillier, H., Willard-Gallo, K. A Simple and Rapid Protocol to Non-enzymatically Dissociate Fresh Human Tissues for the Analysis of Infiltrating Lymphocytes. J. Vis. Exp. (94), e52392, doi:10.3791/52392 (2014).

View Video