This article reports on a laboratory scale investigation of an existing field procedure and its adaptation for sealing of leaky wellbores. It consists of mechanical expansion of metal pipe, which results in an improved metal/cement bond, ultimate sealing of hydraulic pathways and prevention of gas leaks caused by the presence of a microannular channel.
Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP)1.
The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks.
The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments.
所报告的实验步骤,有两个主要的组件是关键的:其模拟井孔和一个用于进行机械操作的水泥的膨胀夹具复合气瓶。
井孔可用于生产地下流体(水,油,气体或蒸汽),以及注射各种流体的主网关。不管其功能的,井眼需要提供生产/注入的流体的受控流动。井筒施工有两种不同的操作:钻井和完井。井水泥,完井过程的一部分,主要提供层位封隔,机械支撑的金属管(套管),并且从腐蚀性液体保护金属部件。这些是不打折扣的,全功能的井筒的基本要素。井筒水泥护套的完整性是水合的水泥的化学和物理性质的函数,所述C的几何ASED很好,周围地层/岩层的性质体液2,3。不完全去除钻井液会导致较差的区域隔离,因为它可以防止在岩石和/或金属界面形成牢固关系。水泥笔杆能井的寿命期间可以经受许多类型的故障。引起的完井和生产操作压力和温度振幅向水泥基体中裂缝的发展;剥离是由压力和/或温度的变化和水泥水化收缩4,5,6引起的。其结果是几乎总是microannular流体流动的存在,但它的发生,可提前或经过多年的使用寿命检测。
希思曼和Beck(2006年)创建的水泥外壳经过了100的压力和温度循环载荷,这表明可见剥离,水泥裂缝能带来优惠的途径迁移流的起始模型<SUP> 7。在该领域中,膨胀和井孔的金属部件的收缩,也不会与这些水泥和岩石的重合,引起界面剥离和形成微环,从而导致增加了水泥环的渗透性。一个附加的壳装载可导致在水泥基体径向裂纹的传播,一旦拉伸应力超过材料8的拉伸强度。所有前述水泥的故障可能会导致微沟道,从而导致气体迁移时,SCP的发生,和长期的环境风险。
有相当多的生产和废弃井与SCP构成连续的天然气排放9的潜在新来源。沃森和315,000石油,天然气和注水井在艾伯塔省巴楚(2009年)进行了分析,加拿大还显示,井偏差,井型,抛弃法和水泥质量的关键因素合ntributing到势阱中的泄漏以及10的浅部。现有的补救行动是昂贵的和不成功的;挤注水泥,其中最常用的补救技术之一,具有仅50%11成功率。
在本文中,我们报告了膨胀套管技术(ECT)的为漏井筒12,13新的修复技术评估。 ECT可以在新的或现有的14口井应用。由雪佛龙公司于1999年11月15日进行的良好这项技术的首次商业安装在墨西哥海湾的浅水水域,目前运行范围为膨胀管封装的垂直距离,温度为100°的倾角可达205°C,泥浆比重2.37克/厘米3,8763米,水压的160.6京帕压力和管状长度2092米16的深度。一个典型的扩张速度为实体膨胀管件是pproximately2.4米/ 17分钟。
这项研究提供了一个独特的方法,ECT技术的适应,作为SCP新的修复操作。钢管的膨胀压缩水泥,这将导致在界面处的气流的闭合和密封的气体泄漏。它提到,本研究的焦点是现有microannular气流的密封是很重要的,所以我们只集中在作为漏井筒的一个可能的原因。为了测试新适配的技术的有效性用于此目的,我们设计了一个现有microannular流井眼模型。这是通过水泥水化过程中旋转的内管得到的。这并不是模拟任何野外作业,只是快进几十年的热和压力负荷在井眼后会发生什么。
The reported experimental procedure has two main components that are critical: composite cylinders that simulate wellbores and the expansion fixture that is used to carry out mechanical manipulation of cement. When designing wellbore models (cement/pipe composite cylinders), it is critical to choose adequate cement density, store samples under total humidity conditions (100% RH) and establish pipe-cement debonding before cement slurry completely sets. Failing to achieve this would make the entire gas flow experiment impo…
The authors have nothing to disclose.
作者要感谢以下人员和机构的帮助和支持:威廉·波塔斯和詹姆斯希思曼(行业顾问,壳牌E&P),理查德·利特尔和罗德尼·潘宁顿(壳牌Westhollow技术中心),丹尼尔·迪克雷申佐(壳牌研究嘛工程师),比尔·卡拉瑟斯(拉法基),蒂姆·夸克(现已与雪佛龙),格里·马斯特曼和曼努埃尔·韦恩(LSU PERTT实验室),里克·扬(路易斯安那州立大学岩石力学实验室),和SEER实验室的成员(东海堂Oyibo,淘淘和约尔丹Bossev)。
ASTM A53 Grade B ERW Schedule 40 Steel pipe – OD=10.16 cm, ID=10.04 cm, L=59.7 cm | Baker Sales | BPE-4.00BB40 | |
ASTM A53 Grade B ERW Schedule 10 Steel pipe – OD=6 cm, ID=5.94 cm, L=61 cm | Service Steel | n/a | |
Expansion Cones – AISI D2 grade alloy steel (60 RC hardness) | Shell | Custom-made | |
Pipe coupling – OD=6.35 cm, ID=6 cm, L=4.4 cm | LSU | Custom-made | |
Steel plate ring – OD=10.16 cm, ID=5.76 cm, thickness=6.35 mm | Louisiana Cutting | Custom-made | |
Class H Cement | LaFarge | 04-16-12 / 14-18 | |
Defoaming agent – D-Air 3000L | Halliburton | n/a | |
Bentonite clay | LSU | n/a | |
Calcium hydroxide | LSU | n/a | |
Expansion Fixture | Shell | Custom-made | |
Pressure transducers | Omega | PX480A-200GV | |
Teflon tubing | Swagelok | PB0754100 | |
Union tee | Swagelok | SS-400-3 | |
Elbow union | Swagelok | SS-400-9 | |
Female elbow | Swagelok | SS-400-8-8 | |
Port connector | Swagelok | SS-401-PC | |
Forged body valve | Swagelok | SS-1RS4 | |
Tube adapter | Swagelok | SS-4-TA-1-2 | |
Pipe lubricant | E.F. Houghoton & Co. | 71323998 | |
Instant Galvanize Zinc Coating | CRC | 78254184128 |